温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
云南省
曲靖市
宣威
民族
中学
2023
学年
高考
全国
统考
预测
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设过定点的直线与椭圆:交于不同的两点,,若原点在以为直径的圆的外部,则直线的斜率的取值范围为( )
A. B.
C. D.
2.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(,)
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重比为58.79kg
3.已知函数()的部分图象如图所示,且,则的最小值为( )
A. B.
C. D.
4.函数的图象大致为( )
A. B.
C. D.
5.若非零实数、满足,则下列式子一定正确的是( )
A. B.
C. D.
6.的展开式中有理项有( )
A.项 B.项 C.项 D.项
7.已知双曲线的右焦点为,若双曲线的一条渐近线的倾斜角为,且点到该渐近线的距离为,则双曲线的实轴的长为
A. B.
C. D.
8.若,,,则下列结论正确的是( )
A. B. C. D.
9.已知实数满足,则的最小值为( )
A. B. C. D.
10.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有
A.72种 B.36种 C.24种 D.18种
11.设,其中a,b是实数,则( )
A.1 B.2 C. D.
12.已知命题若,则,则下列说法正确的是( )
A.命题是真命题
B.命题的逆命题是真命题
C.命题的否命题是“若,则”
D.命题的逆否命题是“若,则”
二、填空题:本题共4小题,每小题5分,共20分。
13.已知椭圆的左、右焦点分别为、,过椭圆的右焦点作一条直线交椭圆于点、.则内切圆面积的最大值是_________.
14.某公园划船收费标准如表:
某班16名同学一起去该公园划船,若每人划船的时间均为1小时,每只租船必须坐满,租船最低总费用为______元,租船的总费用共有_____种可能.
15.已知函数,则下列结论中正确的是_________.①是周期函数;②的对称轴方程为,;③在区间上为增函数;④方程在区间有6个根.
16.在中,为定长,,若的面积的最大值为,则边的长为____________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在三棱柱中,,,,为的中点,且.
(1)求证:平面;
(2)求锐二面角的余弦值.
18.(12分)如图所示,在四棱锥中,底面为正方形,,,,,为的中点,为棱上的一点.
(1)证明:面面;
(2)当为中点时,求二面角余弦值.
19.(12分)已知是各项都为正数的数列,其前项和为,且为与的等差中项.
(1)求证:数列为等差数列;
(2)设,求的前100项和.
20.(12分)已知.
(1)解不等式;
(2)若均为正数,且,求的最小值.
21.(12分)小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员工休假的概率都是,且是否休假互不影响,若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店维持营业,否则该店就停业.
(1)求发生调剂现象的概率;
(2)设营业店铺数为X,求X的分布列和数学期望.
22.(10分)如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形, 为棱上的动点,且.
(I)求证:为直角三角形;
(II)试确定的值,使得二面角的平面角余弦值为.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
设直线:,,,由原点在以为直径的圆的外部,可得,联立直线与椭圆方程,结合韦达定理,即可求得答案.
【题目详解】
显然直线不满足条件,故可设直线:,
,,由,得,
,
解得或,
,,
,
,
,
解得,
直线的斜率的取值范围为.
故选:D.
【答案点睛】
本题解题关键是掌握椭圆的基础知识和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式,考查了分析能力和计算能力,属于中档题.
2、D
【答案解析】
根据y与x的线性回归方程为 y=0.85x﹣85.71,则
=0.85>0,y 与 x 具有正的线性相关关系,A正确;
回归直线过样本点的中心(),B正确;
该大学某女生身高增加 1cm,预测其体重约增加 0.85kg,C正确;
该大学某女生身高为 170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误.
故选D.
3、A
【答案解析】
是函数的零点,根据五点法求出图中零点及轴左边第一个零点可得.
【题目详解】
由题意,,∴函数在轴右边的第一个零点为,在轴左边第一个零点是,
∴的最小值是.
故选:A.
【答案点睛】
本题考查三角函数的周期性,考查函数的对称性.函数的零点就是其图象对称中心的横坐标.
4、A
【答案解析】
确定函数在定义域内的单调性,计算时的函数值可排除三个选项.
【题目详解】
时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,,排除C,只有A可满足.
故选:A.
【答案点睛】
本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.
5、C
【答案解析】
令,则,,将指数式化成对数式得、后,然后取绝对值作差比较可得.
【题目详解】
令,则,,,,
,因此,.
故选:C.
【答案点睛】
本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题.
6、B
【答案解析】
由二项展开式定理求出通项,求出的指数为整数时的个数,即可求解.
【题目详解】
,,
当,,,时,为有理项,共项.
故选:B.
【答案点睛】
本题考查二项展开式项的特征,熟练掌握二项展开式的通项公式是解题的关键,属于基础题.
7、B
【答案解析】
双曲线的渐近线方程为,由题可知.
设点,则点到直线的距离为,解得,
所以,解得,所以双曲线的实轴的长为,故选B.
8、D
【答案解析】
根据指数函数的性质,取得的取值范围,即可求解,得到答案.
【题目详解】
由指数函数的性质,可得,即,
又由,所以.
故选:D.
【答案点睛】
本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.
9、A
【答案解析】
所求的分母特征,利用变形构造,再等价变形,利用基本不等式求最值.
【题目详解】
解:因为满足,
则
,
当且仅当时取等号,
故选:.
【答案点睛】
本题考查通过拼凑法利用基本不等式求最值.拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键.(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标(3)拆项、添项应注意检验利用基本不等式的前提.
10、B
【答案解析】
根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.
【题目详解】
2名内科医生,每个村一名,有2种方法,
3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,
若甲村有1外科,2名护士,则有,其余的分到乙村,
若甲村有2外科,1名护士,则有,其余的分到乙村,
则总共的分配方案为2×(9+9)=2×18=36种,
故选:B.
【答案点睛】
本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.
11、D
【答案解析】
根据复数相等,可得,然后根据复数模的计算,可得结果.
【题目详解】
由题可知:,
即,所以
则
故选:D
【答案点睛】
本题考查复数模的计算,考验计算,属基础题.
12、B
【答案解析】
解不等式,可判断A选项的正误;写出原命题的逆命题并判断其真假,可判断B选项的正误;利用原命题与否命题、逆否命题的关系可判断C、D选项的正误.综合可得出结论.
【题目详解】
解不等式,解得,则命题为假命题,A选项错误;
命题的逆命题是“若,则”,该命题为真命题,B选项正确;
命题的否命题是“若,则”,C选项错误;
命题的逆否命题是“若,则”,D选项错误.
故选:B.
【答案点睛】
本题考查四种命题的关系,考查推理能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
令直线:,与椭圆方程联立消去得,可设,则,.可知,又,故.三角形周长与三角形内切圆的半径的积是三角形面积的二倍,则内切圆半径,其面积最大值为.故本题应填.
点睛:圆锥曲线中最值与范围的求法有两种:(1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.(2)代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立起目标函数,再求这个函数的最值,求函数最值的常用方法有配方法,判别式法,重要不等式及函数的单调性法等.
14、360 10
【答案解析】
列出所有租船的情况,分别计算出租金,由此能求出结果.
【题目详解】
当租两人船时,租金为:元,
当租四人船时,租金为:元,
当租1条四人船6条两人船时,租金为:元,
当租2条四人船4条两人船时,租金为:元,
当租3条四人船2条两人船时,租金为:元,
当租1条六人船5条2人船时,租金为:元,
当租2条六人船2条2人船时,租金为:元,
当租1条六人船1条四人船3条2人船时,租金为:元,
当租1条六人船2条四人船1条2人船时,租金为:元,
当租2条六人船1条四人船时,租金为:元,
综上,租船最低总费用为360元,租船的总费用共有10种可能.
故答案为:360,10.
【答案点睛】
本小题主要考查分类讨论的数学思想方法,考查实际应用问题,属于基础题.
15、①②④
【答案解析】
由函数,对选项逐个验证即得答案.
【题目详解】
函数,
是周期函数,最小正周期为,故①正确;
当或时,有最大值或最小值,此时或,即或,即.
的对称轴方程为,,故②正确;
当时,,此时在上单调递减,在上单调递增,在区间上不是增函数,故③错误;
作出函数的部分图象,如图所示
方程在区