分享
云南省曲靖市宣威民族中学2023学年高考全国统考预测密卷数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
云南省 曲靖市 宣威 民族 中学 2023 学年 高考 全国 统考 预测 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设过定点的直线与椭圆:交于不同的两点,,若原点在以为直径的圆的外部,则直线的斜率的取值范围为( ) A. B. C. D. 2.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是 A.y与x具有正的线性相关关系 B.回归直线过样本点的中心(,) C.若该大学某女生身高增加1cm,则其体重约增加0.85kg D.若该大学某女生身高为170cm,则可断定其体重比为58.79kg 3.已知函数()的部分图象如图所示,且,则的最小值为( ) A. B. C. D. 4.函数的图象大致为( ) A. B. C. D. 5.若非零实数、满足,则下列式子一定正确的是( ) A. B. C. D. 6.的展开式中有理项有( ) A.项 B.项 C.项 D.项 7.已知双曲线的右焦点为,若双曲线的一条渐近线的倾斜角为,且点到该渐近线的距离为,则双曲线的实轴的长为 A. B. C. D. 8.若,,,则下列结论正确的是( ) A. B. C. D. 9.已知实数满足,则的最小值为( ) A. B. C. D. 10.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有 A.72种 B.36种 C.24种 D.18种 11.设,其中a,b是实数,则( ) A.1 B.2 C. D. 12.已知命题若,则,则下列说法正确的是( ) A.命题是真命题 B.命题的逆命题是真命题 C.命题的否命题是“若,则” D.命题的逆否命题是“若,则” 二、填空题:本题共4小题,每小题5分,共20分。 13.已知椭圆的左、右焦点分别为、,过椭圆的右焦点作一条直线交椭圆于点、.则内切圆面积的最大值是_________. 14.某公园划船收费标准如表: 某班16名同学一起去该公园划船,若每人划船的时间均为1小时,每只租船必须坐满,租船最低总费用为______元,租船的总费用共有_____种可能. 15.已知函数,则下列结论中正确的是_________.①是周期函数;②的对称轴方程为,;③在区间上为增函数;④方程在区间有6个根. 16.在中,为定长,,若的面积的最大值为,则边的长为____________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)如图,在三棱柱中,,,,为的中点,且. (1)求证:平面; (2)求锐二面角的余弦值. 18.(12分)如图所示,在四棱锥中,底面为正方形,,,,,为的中点,为棱上的一点. (1)证明:面面; (2)当为中点时,求二面角余弦值. 19.(12分)已知是各项都为正数的数列,其前项和为,且为与的等差中项. (1)求证:数列为等差数列; (2)设,求的前100项和. 20.(12分)已知. (1)解不等式; (2)若均为正数,且,求的最小值. 21.(12分)小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员工休假的概率都是,且是否休假互不影响,若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店维持营业,否则该店就停业. (1)求发生调剂现象的概率; (2)设营业店铺数为X,求X的分布列和数学期望. 22.(10分)如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形, 为棱上的动点,且. (I)求证:为直角三角形; (II)试确定的值,使得二面角的平面角余弦值为. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 设直线:,,,由原点在以为直径的圆的外部,可得,联立直线与椭圆方程,结合韦达定理,即可求得答案. 【题目详解】 显然直线不满足条件,故可设直线:, ,,由,得, , 解得或, ,, , , , 解得, 直线的斜率的取值范围为. 故选:D. 【答案点睛】 本题解题关键是掌握椭圆的基础知识和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式,考查了分析能力和计算能力,属于中档题. 2、D 【答案解析】 根据y与x的线性回归方程为 y=0.85x﹣85.71,则 =0.85>0,y 与 x 具有正的线性相关关系,A正确; 回归直线过样本点的中心(),B正确; 该大学某女生身高增加 1cm,预测其体重约增加 0.85kg,C正确; 该大学某女生身高为 170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误. 故选D. 3、A 【答案解析】 是函数的零点,根据五点法求出图中零点及轴左边第一个零点可得. 【题目详解】 由题意,,∴函数在轴右边的第一个零点为,在轴左边第一个零点是, ∴的最小值是. 故选:A. 【答案点睛】 本题考查三角函数的周期性,考查函数的对称性.函数的零点就是其图象对称中心的横坐标. 4、A 【答案解析】 确定函数在定义域内的单调性,计算时的函数值可排除三个选项. 【题目详解】 时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,,排除C,只有A可满足. 故选:A. 【答案点睛】 本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项. 5、C 【答案解析】 令,则,,将指数式化成对数式得、后,然后取绝对值作差比较可得. 【题目详解】 令,则,,,, ,因此,. 故选:C. 【答案点睛】 本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题. 6、B 【答案解析】 由二项展开式定理求出通项,求出的指数为整数时的个数,即可求解. 【题目详解】 ,, 当,,,时,为有理项,共项. 故选:B. 【答案点睛】 本题考查二项展开式项的特征,熟练掌握二项展开式的通项公式是解题的关键,属于基础题. 7、B 【答案解析】 双曲线的渐近线方程为,由题可知. 设点,则点到直线的距离为,解得, 所以,解得,所以双曲线的实轴的长为,故选B. 8、D 【答案解析】 根据指数函数的性质,取得的取值范围,即可求解,得到答案. 【题目详解】 由指数函数的性质,可得,即, 又由,所以. 故选:D. 【答案点睛】 本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题. 9、A 【答案解析】 所求的分母特征,利用变形构造,再等价变形,利用基本不等式求最值. 【题目详解】 解:因为满足, 则 , 当且仅当时取等号, 故选:. 【答案点睛】 本题考查通过拼凑法利用基本不等式求最值.拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键.(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标(3)拆项、添项应注意检验利用基本不等式的前提. 10、B 【答案解析】 根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可. 【题目详解】 2名内科医生,每个村一名,有2种方法, 3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士, 若甲村有1外科,2名护士,则有,其余的分到乙村, 若甲村有2外科,1名护士,则有,其余的分到乙村, 则总共的分配方案为2×(9+9)=2×18=36种, 故选:B. 【答案点睛】 本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型. 11、D 【答案解析】 根据复数相等,可得,然后根据复数模的计算,可得结果. 【题目详解】 由题可知:, 即,所以 则 故选:D 【答案点睛】 本题考查复数模的计算,考验计算,属基础题. 12、B 【答案解析】 解不等式,可判断A选项的正误;写出原命题的逆命题并判断其真假,可判断B选项的正误;利用原命题与否命题、逆否命题的关系可判断C、D选项的正误.综合可得出结论. 【题目详解】 解不等式,解得,则命题为假命题,A选项错误; 命题的逆命题是“若,则”,该命题为真命题,B选项正确; 命题的否命题是“若,则”,C选项错误; 命题的逆否命题是“若,则”,D选项错误. 故选:B. 【答案点睛】 本题考查四种命题的关系,考查推理能力,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 令直线:,与椭圆方程联立消去得,可设,则,.可知,又,故.三角形周长与三角形内切圆的半径的积是三角形面积的二倍,则内切圆半径,其面积最大值为.故本题应填. 点睛:圆锥曲线中最值与范围的求法有两种:(1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.(2)代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立起目标函数,再求这个函数的最值,求函数最值的常用方法有配方法,判别式法,重要不等式及函数的单调性法等. 14、360 10 【答案解析】 列出所有租船的情况,分别计算出租金,由此能求出结果. 【题目详解】 当租两人船时,租金为:元, 当租四人船时,租金为:元, 当租1条四人船6条两人船时,租金为:元, 当租2条四人船4条两人船时,租金为:元, 当租3条四人船2条两人船时,租金为:元, 当租1条六人船5条2人船时,租金为:元, 当租2条六人船2条2人船时,租金为:元, 当租1条六人船1条四人船3条2人船时,租金为:元, 当租1条六人船2条四人船1条2人船时,租金为:元, 当租2条六人船1条四人船时,租金为:元, 综上,租船最低总费用为360元,租船的总费用共有10种可能. 故答案为:360,10. 【答案点睛】 本小题主要考查分类讨论的数学思想方法,考查实际应用问题,属于基础题. 15、①②④ 【答案解析】 由函数,对选项逐个验证即得答案. 【题目详解】 函数, 是周期函数,最小正周期为,故①正确; 当或时,有最大值或最小值,此时或,即或,即. 的对称轴方程为,,故②正确; 当时,,此时在上单调递减,在上单调递增,在区间上不是增函数,故③错误; 作出函数的部分图象,如图所示 方程在区

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开