温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
北京市
海淀区
重点中学
2023
学年
高考
全国
统考
预测
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在四面体中,为正三角形,边长为6,,,,则四面体的体积为( )
A. B. C.24 D.
2.已知直线:与椭圆交于、两点,与圆:交于、两点.若存在,使得,则椭圆的离心率的取值范围为( )
A. B. C. D.
3.已知函数且的图象恒过定点,则函数图象以点为对称中心的充要条件是( )
A. B.
C. D.
4.已知双曲线的一条渐近线倾斜角为,则( )
A.3 B. C. D.
5.在边长为2的菱形中,,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外接球的表面积为( )
A. B. C. D.
6.的展开式中的一次项系数为( )
A. B. C. D.
7.执行如图所示的程序框图,如果输入,则输出属于( )
A. B. C. D.
8.若为虚数单位,则复数在复平面上对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )
A.56 B.60 C.140 D.120
10.如图所示,矩形的对角线相交于点,为的中点,若,则等于( ).
A. B. C. D.
11.已知函数满足=1,则等于( )
A.- B. C.- D.
12.已知函数,,且,则( )
A.3 B.3或7 C.5 D.5或8
二、填空题:本题共4小题,每小题5分,共20分。
13.若,则____.
14.学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“作品获得一等奖”;乙说:“作品获得一等奖”;丙说:“,两项作品未获得一等奖”;丁说:“是或作品获得一等奖”,若这四位同学中只有两位说的话是对的,则获得一等奖的作品是___.
15.点到直线的距离为________
16.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺,术曰:周自相乘,以高乘之,十二而一”,这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,就是说:圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),则由此可推得圆周率的取值为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(1)若函数不存在单调递减区间,求实数的取值范围;
(2)若函数的两个极值点为,,求的最小值.
18.(12分)在直角坐标系中,直线的参数方程是为参数),曲线的参数方程是为参数),以为极点,轴的非负半轴为极轴建立极坐标系.
(1)求直线和曲线的极坐标方程;
(2)已知射线与曲线交于两点,射线与直线交于点,若的面积为1,求的值和弦长.
19.(12分)在数列和等比数列中,,,.
(1)求数列及的通项公式;
(2)若,求数列的前n项和.
20.(12分)已知函数,.
(1)当时,讨论函数的单调性;
(2)若,当时,函数,求函数的最小值.
21.(12分)已知如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AEBD于E,延长AE交BC于F,将△ABD沿BD折起,使平面ABD平面BCD,如图2所示。
(Ⅰ)求证:AE平面BCD;
(Ⅱ)求二面角A-DC-B的余弦值;
(Ⅲ)求三棱锥B-AEF与四棱锥A-FEDC的体积的比(只需写出结果,不要求过程).
22.(10分)已知抛物线Γ:y2=2px(p>0)的焦点为F,P是抛物线Γ上一点,且在第一象限,满足(2,2)
(1)求抛物线Γ的方程;
(2)已知经过点A(3,﹣2)的直线交抛物线Γ于M,N两点,经过定点B(3,﹣6)和M的直线与抛物线Γ交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
推导出,分别取的中点,连结,则,推导出,从而,进而四面体的体积为,由此能求出结果.
【题目详解】
解: 在四面体中,为等边三角形,边长为6,
,,,
,
,
分别取的中点,连结,
则,
且,,
,
,
平面,平面,
,
四面体的体积为:
.
故答案为:.
【答案点睛】
本题考查四面体体积的求法,考查空间中线线,线面,面面间的位置关系等基础知识,考查运算求解能力.
2、A
【答案解析】
由题意可知直线过定点即为圆心,由此得到坐标的关系,再根据点差法得到直线的斜率与坐标的关系,由此化简并求解出离心率的取值范围.
【题目详解】
设,且线过定点即为的圆心,
因为,所以,
又因为,所以,
所以,所以,
所以,所以,所以,
所以.
故选:A.
【答案点睛】
本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.
3、A
【答案解析】
由题可得出的坐标为,再利用点对称的性质,即可求出和.
【题目详解】
根据题意,,所以点的坐标为,
又 ,
所以.
故选:A.
【答案点睛】
本题考查指数函数过定点问题和函数对称性的应用,属于基础题.
4、D
【答案解析】
由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果.
【题目详解】
由双曲线方程可知:,渐近线方程为:,
一条渐近线的倾斜角为,,解得:.
故选:.
【答案点睛】
本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于的范围的要求.
5、D
【答案解析】
取AC中点N,由题意得即为二面角的平面角,过点B作于O,易得点O为的中心,则三棱锥的外接球球心在直线BO上,设球心为,半径为,列出方程即可得解.
【题目详解】
如图,由题意易知与均为正三角形,取AC中点N,连接BN,DN,
则,,即为二面角的平面角,
过点B作于O,则平面ACD,
由,可得,,,
即点O为的中心,
三棱锥的外接球球心在直线BO上,设球心为,半径为,
,,
解得,
三棱锥的外接球的表面积为.
故选:D.
【答案点睛】
本题考查了立体图形外接球表面积的求解,考查了空间想象能力,属于中档题.
6、B
【答案解析】
根据多项式乘法法则得出的一次项系数,然后由等差数列的前项和公式和组合数公式得出结论.
【题目详解】
由题意展开式中的一次项系数为.
故选:B.
【答案点睛】
本题考查二项式定理的应用,应用多项式乘法法则可得展开式中某项系数.同时本题考查了组合数公式.
7、B
【答案解析】
由题意,框图的作用是求分段函数的值域,求解即得解.
【题目详解】
由题意可知,
框图的作用是求分段函数的值域,
当;
当
综上:.
故选:B
【答案点睛】
本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.
8、D
【答案解析】
根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案.
【题目详解】
由题意,根据复数的运算,可得,
所对应的点为位于第四象限.
故选D.
【答案点睛】
本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题.
9、C
【答案解析】
试题分析:由题意得,自习时间不少于小时的频率为,故自习时间不少于小时的频率为,故选C.
考点:频率分布直方图及其应用.
10、A
【答案解析】
由平面向量基本定理,化简得,所以,即可求解,得到答案.
【题目详解】
由平面向量基本定理,化简
,所以,即,
故选A.
【答案点睛】
本题主要考查了平面向量基本定理的应用,其中解答熟记平面向量的基本定理,化简得到是解答的关键,着重考查了运算与求解能力,数基础题.
11、C
【答案解析】
设的最小正周期为,可得,则,再根据得,又,则可求出,进而可得.
【题目详解】
解:设的最小正周期为,因为,
所以,所以,
所以,
又,所以当时,,
,因为
,
整理得,因为,
,
,则
所以
.
故选:C.
【答案点睛】
本题考查三角形函数的周期性和对称性,考查学生分析能力和计算能力,是一道难度较大的题目.
12、B
【答案解析】
根据函数的对称轴以及函数值,可得结果.
【题目详解】
函数,
若,则的图象关于对称,
又,所以或,
所以的值是7或3.
故选:B.
【答案点睛】
本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由, 得出,根据两角和与差的正弦公式和余弦公式化简,再利用齐次式即可求出结果.
【题目详解】
因为, 所以,
所以.
故答案为:.
【答案点睛】
本题考查三角函数化简求值,利用二倍角正切公式、两角和与差的正弦公式和余弦公式,以及运用齐次式求值,属于对公式的考查以及对计算能力的考查.
14、C
【答案解析】
假设获得一等奖的作品,判断四位同学说对的人数.
【题目详解】
分别获奖的说对人数如下表:
获奖作品
A
B
C
D
甲
对
错
错
错
乙
错
错
对
错
丙
对
错
对
错
丁
对
错
错
对
说对人数
3
0
2
1
故获得一等奖的作品是C.