分享
北京市海淀区重点中学2023学年高考全国统考预测密卷数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
北京市 海淀区 重点中学 2023 学年 高考 全国 统考 预测 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.在四面体中,为正三角形,边长为6,,,,则四面体的体积为( ) A. B. C.24 D. 2.已知直线:与椭圆交于、两点,与圆:交于、两点.若存在,使得,则椭圆的离心率的取值范围为( ) A. B. C. D. 3.已知函数且的图象恒过定点,则函数图象以点为对称中心的充要条件是( ) A. B. C. D. 4.已知双曲线的一条渐近线倾斜角为,则( ) A.3 B. C. D. 5.在边长为2的菱形中,,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外接球的表面积为( ) A. B. C. D. 6.的展开式中的一次项系数为( ) A. B. C. D. 7.执行如图所示的程序框图,如果输入,则输出属于( ) A. B. C. D. 8.若为虚数单位,则复数在复平面上对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 9.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( ) A.56 B.60 C.140 D.120 10.如图所示,矩形的对角线相交于点,为的中点,若,则等于( ). A. B. C. D. 11.已知函数满足=1,则等于( ) A.- B. C.- D. 12.已知函数,,且,则( ) A.3 B.3或7 C.5 D.5或8 二、填空题:本题共4小题,每小题5分,共20分。 13.若,则____. 14.学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“作品获得一等奖”;乙说:“作品获得一等奖”;丙说:“,两项作品未获得一等奖”;丁说:“是或作品获得一等奖”,若这四位同学中只有两位说的话是对的,则获得一等奖的作品是___. 15.点到直线的距离为________ 16.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺,术曰:周自相乘,以高乘之,十二而一”,这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,就是说:圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),则由此可推得圆周率的取值为________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数. (1)若函数不存在单调递减区间,求实数的取值范围; (2)若函数的两个极值点为,,求的最小值. 18.(12分)在直角坐标系中,直线的参数方程是为参数),曲线的参数方程是为参数),以为极点,轴的非负半轴为极轴建立极坐标系. (1)求直线和曲线的极坐标方程; (2)已知射线与曲线交于两点,射线与直线交于点,若的面积为1,求的值和弦长. 19.(12分)在数列和等比数列中,,,. (1)求数列及的通项公式; (2)若,求数列的前n项和. 20.(12分)已知函数,. (1)当时,讨论函数的单调性; (2)若,当时,函数,求函数的最小值. 21.(12分)已知如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AEBD于E,延长AE交BC于F,将△ABD沿BD折起,使平面ABD平面BCD,如图2所示。 (Ⅰ)求证:AE平面BCD; (Ⅱ)求二面角A-DC-B的余弦值; (Ⅲ)求三棱锥B-AEF与四棱锥A-FEDC的体积的比(只需写出结果,不要求过程). 22.(10分)已知抛物线Γ:y2=2px(p>0)的焦点为F,P是抛物线Γ上一点,且在第一象限,满足(2,2) (1)求抛物线Γ的方程; (2)已知经过点A(3,﹣2)的直线交抛物线Γ于M,N两点,经过定点B(3,﹣6)和M的直线与抛物线Γ交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 推导出,分别取的中点,连结,则,推导出,从而,进而四面体的体积为,由此能求出结果. 【题目详解】 解: 在四面体中,为等边三角形,边长为6, ,,, , , 分别取的中点,连结, 则, 且,, , , 平面,平面, , 四面体的体积为: . 故答案为:. 【答案点睛】 本题考查四面体体积的求法,考查空间中线线,线面,面面间的位置关系等基础知识,考查运算求解能力. 2、A 【答案解析】 由题意可知直线过定点即为圆心,由此得到坐标的关系,再根据点差法得到直线的斜率与坐标的关系,由此化简并求解出离心率的取值范围. 【题目详解】 设,且线过定点即为的圆心, 因为,所以, 又因为,所以, 所以,所以, 所以,所以,所以, 所以. 故选:A. 【答案点睛】 本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算. 3、A 【答案解析】 由题可得出的坐标为,再利用点对称的性质,即可求出和. 【题目详解】 根据题意,,所以点的坐标为, 又 , 所以. 故选:A. 【答案点睛】 本题考查指数函数过定点问题和函数对称性的应用,属于基础题. 4、D 【答案解析】 由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果. 【题目详解】 由双曲线方程可知:,渐近线方程为:, 一条渐近线的倾斜角为,,解得:. 故选:. 【答案点睛】 本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于的范围的要求. 5、D 【答案解析】 取AC中点N,由题意得即为二面角的平面角,过点B作于O,易得点O为的中心,则三棱锥的外接球球心在直线BO上,设球心为,半径为,列出方程即可得解. 【题目详解】 如图,由题意易知与均为正三角形,取AC中点N,连接BN,DN, 则,,即为二面角的平面角, 过点B作于O,则平面ACD, 由,可得,,, 即点O为的中心, 三棱锥的外接球球心在直线BO上,设球心为,半径为, ,, 解得, 三棱锥的外接球的表面积为. 故选:D. 【答案点睛】 本题考查了立体图形外接球表面积的求解,考查了空间想象能力,属于中档题. 6、B 【答案解析】 根据多项式乘法法则得出的一次项系数,然后由等差数列的前项和公式和组合数公式得出结论. 【题目详解】 由题意展开式中的一次项系数为. 故选:B. 【答案点睛】 本题考查二项式定理的应用,应用多项式乘法法则可得展开式中某项系数.同时本题考查了组合数公式. 7、B 【答案解析】 由题意,框图的作用是求分段函数的值域,求解即得解. 【题目详解】 由题意可知, 框图的作用是求分段函数的值域, 当; 当 综上:. 故选:B 【答案点睛】 本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题. 8、D 【答案解析】 根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案. 【题目详解】 由题意,根据复数的运算,可得, 所对应的点为位于第四象限. 故选D. 【答案点睛】 本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题. 9、C 【答案解析】 试题分析:由题意得,自习时间不少于小时的频率为,故自习时间不少于小时的频率为,故选C. 考点:频率分布直方图及其应用. 10、A 【答案解析】 由平面向量基本定理,化简得,所以,即可求解,得到答案. 【题目详解】 由平面向量基本定理,化简 ,所以,即, 故选A. 【答案点睛】 本题主要考查了平面向量基本定理的应用,其中解答熟记平面向量的基本定理,化简得到是解答的关键,着重考查了运算与求解能力,数基础题. 11、C 【答案解析】 设的最小正周期为,可得,则,再根据得,又,则可求出,进而可得. 【题目详解】 解:设的最小正周期为,因为, 所以,所以, 所以, 又,所以当时,, ,因为 , 整理得,因为, , ,则 所以       .                                                                                                                                                                                                                                                                                                                                                                                                                              故选:C. 【答案点睛】 本题考查三角形函数的周期性和对称性,考查学生分析能力和计算能力,是一道难度较大的题目. 12、B 【答案解析】 根据函数的对称轴以及函数值,可得结果. 【题目详解】 函数, 若,则的图象关于对称, 又,所以或, 所以的值是7或3. 故选:B. 【答案点睛】 本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 由, 得出,根据两角和与差的正弦公式和余弦公式化简,再利用齐次式即可求出结果. 【题目详解】 因为, 所以, 所以. 故答案为:. 【答案点睛】 本题考查三角函数化简求值,利用二倍角正切公式、两角和与差的正弦公式和余弦公式,以及运用齐次式求值,属于对公式的考查以及对计算能力的考查. 14、C 【答案解析】 假设获得一等奖的作品,判断四位同学说对的人数. 【题目详解】 分别获奖的说对人数如下表: 获奖作品 A B C D 甲 对 错 错 错 乙 错 错 对 错 丙 对 错 对 错 丁 对 错 错 对 说对人数 3 0 2 1 故获得一等奖的作品是C.

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开