温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
湖南省
株洲
中高
压轴
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近( )
A. B. C. D.
2.如图,在平面四边形中,满足,且,沿着把折起,使点到达点的位置,且使,则三棱锥体积的最大值为( )
A.12 B. C. D.
3.在的展开式中,的系数为( )
A.-120 B.120 C.-15 D.15
4.已知,是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为( )
A. B. C.8 D.6
5.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )
A.甲的数据分析素养优于乙 B.乙的数据分析素养优于数学建模素养
C.甲的六大素养整体水平优于乙 D.甲的六大素养中数学运算最强
6.,则与位置关系是 ( )
A.平行 B.异面
C.相交 D.平行或异面或相交
7.已知抛物线y2= 4x的焦点为F,抛物线上任意一点P,且PQ⊥y轴交y轴于点Q,则 的最小值为( )
A. B. C.l D.1
8.已知函数在上单调递增,则的取值范围( )
A. B. C. D.
9.函数与在上最多有n个交点,交点分别为(,……,n),则( )
A.7 B.8 C.9 D.10
10.已知复数,,则( )
A. B. C. D.
11.设,,分别是中,,所对边的边长,则直线与的位置关系是( )
A.平行 B.重合
C.垂直 D.相交但不垂直
12.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数,则的值为 ____
14.已知,则展开式中的系数为__
15.已知数列的首项,函数在上有唯一零点,则数列|的前项和__________.
16.若复数满足,其中为虚数单位,则的共轭复数在复平面内对应点的坐标为_____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)某公园有一块边长为3百米的正三角形空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道将分成面积之比为的两部分(点D,E分别在边,上);再取的中点M,建造直道(如图).设,,(单位:百米).
(1)分别求,关于x的函数关系式;
(2)试确定点D的位置,使两条直道的长度之和最小,并求出最小值.
18.(12分)在中,角A、B、C的对边分别为a、b、c,且.
(1)求角A的大小;
(2)若,的平分线与交于点D,与的外接圆交于点E(异于点A),,求的值.
19.(12分)在平面直角坐标系中,曲线的参数方程为:(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:.
(1)求曲线的极坐标方程和曲线的直角坐标方程;
(2)若直线与曲线交于,两点,与曲线交于,两点,求取得最大值时直线的直角坐标方程.
20.(12分)已知数列{an}满足条件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=,Sn为数列{bn}的前n项和,求证:Sn.
21.(12分)如图,四边形是边长为3的菱形,平面.
(1)求证:平面;
(2)若与平面所成角为,求二面角的正弦值.
22.(10分) [选修4 - 5:不等式选讲]
已知都是正实数,且,求证: .
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
结合所给数字特征,我们可将每层数字表示成2的指数的形式,观察可知,每层指数的和成等比数列分布,结合等比数列前项和公式和对数恒等式即可求解
【题目详解】
如图,将数字塔中的数写成指数形式,可发现其指数恰好构成“杨辉三角”,前10层的指数之和为,所以原数字塔中前10层所有数字之积为.
故选:A
【答案点睛】
本题考查与“杨辉三角”有关的规律求解问题,逻辑推理,等比数列前项和公式应用,属于中档题
2、C
【答案解析】
过作于,连接,易知,,从而可证平面,进而可知,当最大时,取得最大值,取的中点,可得,再由,求出的最大值即可.
【题目详解】
在和中,,所以,则,
过作于,连接,显然,则,且,
又因为,所以平面,
所以,
当最大时,取得最大值,取的中点,则,
所以,
因为,所以点在以为焦点的椭圆上(不在左右顶点),其中长轴长为10,焦距长为8,
所以的最大值为椭圆的短轴长的一半,故最大值为,
所以最大值为,故的最大值为.
故选:C.
【答案点睛】
本题考查三棱锥体积的最大值,考查学生的空间想象能力与计算求解能力,属于中档题.
3、C
【答案解析】
写出展开式的通项公式,令,即,则可求系数.
【题目详解】
的展开式的通项公式为,令,即时,系数为.故选C
【答案点睛】
本题考查二项式展开的通项公式,属基础题.
4、C
【答案解析】
由椭圆的定义以及双曲线的定义、离心率公式化简,结合基本不等式即可求解.
【题目详解】
设椭圆的长半轴长为,双曲线的半实轴长为,半焦距为,
则,,设
由椭圆的定义以及双曲线的定义可得:
,
则
当且仅当时,取等号.
故选:C.
【答案点睛】
本题主要考查了椭圆的定义以及双曲线的定义、离心率公式,属于中等题.
5、D
【答案解析】
根据所给的雷达图逐个选项分析即可.
【题目详解】
对于A,甲的数据分析素养为100分,乙的数据分析素养为80分,
故甲的数据分析素养优于乙,故A正确;
对于B,乙的数据分析素养为80分,数学建模素养为60分,
故乙的数据分析素养优于数学建模素养,故B正确;
对于C,甲的六大素养整体水平平均得分为
,
乙的六大素养整体水平均得分为,故C正确;
对于D,甲的六大素养中数学运算为80分,不是最强的,故D错误;
故选:D
【答案点睛】
本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题.
6、D
【答案解析】
结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交.
选D.
7、A
【答案解析】
设点,则点,,利用向量数量积的坐标运算可得,利用二次函数的性质可得最值.
【题目详解】
解:设点,则点,,
,
,
当时,取最小值,最小值为.
故选:A.
【答案点睛】
本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.
8、B
【答案解析】
由,可得,结合在上单调递增,易得,即可求出的范围.
【题目详解】
由,可得,
时,,而,
又在上单调递增,且,
所以,则,即,故.
故选:B.
【答案点睛】
本题考查了三角函数的单调性的应用,考查了学生的逻辑推理能力,属于基础题.
9、C
【答案解析】
根据直线过定点,采用数形结合,可得最多交点个数, 然后利用对称性,可得结果.
【题目详解】
由题可知:直线过定点
且在是关于对称
如图
通过图像可知:直线与最多有9个交点
同时点左、右边各四个交点关于对称
所以
故选:C
【答案点睛】
本题考查函数对称性的应用,数形结合,难点在于正确画出图像,同时掌握基础函数的性质,属难题.
10、B
【答案解析】
分析:利用的恒等式,将分子、分母同时乘以 ,化简整理得
详解: ,故选B
点睛:复数问题是高考数学中的常考问题,属于得分题,主要考查的方面有:复数的分类、复数的几何意义、复数的模、共轭复数以及复数的乘除运算,在运算时注意符号的正、负问题.
11、C
【答案解析】
试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂直
考点:直线与直线的位置关系
12、C
【答案解析】
分情况讨论,由间接法得到“数”必须排在前两节,“礼”和“乐”必须分开的事件个数,不考虑限制因素,总数有种,进而得到结果.
【题目详解】
当“数”位于第一位时,礼和乐相邻有4种情况,礼和乐顺序有2种,其它剩下的有种情况,由间接法得到满足条件的情况有
当“数”在第二位时,礼和乐相邻有3种情况,礼和乐顺序有2种,其它剩下的有种,
由间接法得到满足条件的情况有
共有:种情况,不考虑限制因素,总数有种,
故满足条件的事件的概率为:
故答案为:C.
【答案点睛】
解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).
二、填空题:本题共4小题,每小题5分,共20分。
13、4
【答案解析】
根据的正负值,代入对应的函数解析式求解即可.
【题目详解】
解:
.
故答案为:.
【答案点睛】
本题考查分段函数函数值的求解,是基础题.
14.
【答案解析】
由题意求定积分得到的值,再根据乘方的意义,排列组合数的计算公式,求出展开式中的系数.
【题目详解】
∵已知,则,
它表示4个因式的乘积.
故其中有2个因式取,一个因式取,剩下的一个因式取1,可得的项.
故展开式中的系数.
故答案为:1.
【答案点睛】
本题主要考查求定积分,乘方的意义,排列组合数的计算公式,属于中档题.
15、
【答案解析】
由函数为偶函数,可得唯一零点为,代入可得数列的递推关系式,再进行配凑转换为等比数列,最后运用分部求和可得答案.
【题目详解】
因为为偶函数,在上有唯一零点,
所以,∴,∴,
∴为首项为2,公比为2的等比数列.所以,.
故答案为:
【答案点睛】
本题主要考查了函数的奇偶性和函数的零点,同时也考查了由递推关系式求数列的通项,考查了数列的分部求和,属于中档题.
16、
【答案解析】
把已知等式变形,再由复数代数形式的乘除运算化简,求出得答案.
【题目详解】
,,
则,的共轭复数在复平面内对应点的坐标为,
故答案为
【答案点睛】
本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义准确计算是关键,是基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1),.,.
(2)当百米时,两条直道的长度之和取得最小值百米.
【答案解析】
(1)由,可解得.方法一:再在中,利用余弦定理,可得关于x的函数关系式;在和中,利用余弦定理,可得关于x的函数关系式.方法二:在中,可得,则有,化简整理即得;同理,化简整理即得.(2)由(1)和基本不等式,计算即得.
【题目详解】
解:(1),是边长为3的