分享
非线性协整时间序列的非参数方法及其应用研究_舒晓惠著.pdf
下载文档

ID:2184066

大小:38.08MB

页数:246页

格式:PDF

时间:2023-04-27

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
非线性 时间 序列 参数 方法 及其 应用 研究 舒晓惠著
前言本书主要研究了非线性协整理论的非参数检验与估计两个领域,包括非线性存在性、混沌与分形特征、非线性非平稳检验以及非线性协整检验与估计,基本梳理清楚了这两个领域的研究脉络和框架。本书运用Gauss编程实现了所提出的各种非参数检验方法,MC仿真给出了相关统计量的临界值表,并比较了各方法的优劣。在随后的实证研究中,本书对我国货币各变量序列,以及我国与国际股市指数序列应用所给出的非线性协整理论的非参数方法进行了非线性存在性检验、混沌与分形特征检验、存在非线性的非平稳检验以及非线性协整检验与估计,得出了较此前学者们应用线性协整理论相关方法更一般的结论。具体而言,本书主要在如下几个方面做了开拓性研究:第一,较为详细地梳理了线性协整理论的内容,对个中细节进行了注解,使得理论脉络更为清晰明了,从而增进了协整理论的易读性。第二,对线性加强型神经网络在时间序列的非线性存在性检验中的应用提出了新的方法,即加强型小波神经网络,并给出了新的实现算法:改进的带动量的LM算法。MC仿真表明,高斯小波、墨西哥帽小波等两线性加强型小波神经网络方法效果较好。第三,发现应用小数据量法实现的最大Lyapunov指数值的意义在随机条件下和确定性混沌条件下是不一致的,因此,利用最大Lyapunov指数探讨非线性协整尚需商榷。第四,发展了秩检验方法,推导了其分布,针对非高斯的单峰分布和存在序列相关性问题提出了相应的改进方法和实现方法,即基于Bootstrap和Block Bootstrap抽样的单位根逆得分秩检验方法。第五,给出了协整的秩检验方法和记录数检验方法的检验临界值表和响应面函数,并应用上述方法对中国与世界主要证券市场股指进行了实证分析,发现其更多存在的则是非线性协整关系。

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开