分享
2023届浙江省杭州二中高考数学考前最后一卷预测卷(含解析).doc
下载文档

ID:21823

大小:2.26MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 浙江省 杭州 中高 数学 考前 最后 一卷 预测 解析
2023学年高考数学模拟测试卷 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是( ) A. B. C. D. 2.在等差数列中,,,若(),则数列的最大值是( ) A. B. C.1 D.3 3.已知双曲线的焦距为,过左焦点作斜率为1的直线交双曲线的右支于点,若线段的中点在圆上,则该双曲线的离心率为( ) A. B. C. D. 4.已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为( ) A. B. C. D. 5.设集合则( ) A. B. C. D. 6.设双曲线(a>0,b>0)的一个焦点为F(c,0)(c>0),且离心率等于,若该双曲线的一条渐近线被圆x2+y2﹣2cx=0截得的弦长为2,则该双曲线的标准方程为( ) A. B. C. D. 7.在直三棱柱中,己知,,,则异面直线与所成的角为( ) A. B. C. D. 8.已知抛物线的焦点为,是抛物线上两个不同的点,若,则线段的中点到轴的距离为( ) A.5 B.3 C. D.2 9.的内角的对边分别为,若,则内角( ) A. B. C. D. 10.的图象如图所示,,若将的图象向左平移个单位长度后所得图象与的图象重合,则可取的值的是( ) A. B. C. D. 11.如图,在矩形中的曲线分别是,的一部分,,,在矩形内随机取一点,若此点取自阴影部分的概率为,取自非阴影部分的概率为,则(  ) A. B. C. D.大小关系不能确定 12.已知,若方程有唯一解,则实数的取值范围是( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知F为双曲线的右焦点,过F作C的渐近线的垂线FD,D为垂足,且(O为坐标原点),则C的离心率为________. 14.的角所对的边分别为,且,,若,则的值为__________. 15.已知函数的定义域为R,导函数为,若,且,则满足的x的取值范围为______. 16.根据如图的算法,输出的结果是_________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)眼保健操是一种眼睛的保健体操,主要是通过按摩眼部穴位,调整眼及头部的血液循环,调节肌肉,改善眼的疲劳,达到预防近视等眼部疾病的目的.某学校为了调查推广眼保健操对改善学生视力的效果,在应届高三的全体800名学生中随机抽取了100名学生进行视力检查,并得到如图的频率分布直方图. (1)若直方图中后三组的频数成等差数列,试估计全年级视力在5.0以上的人数; (2)为了研究学生的视力与眼保健操是否有关系,对年级不做眼保健操和坚持做眼保健操的学生进行了调查,得到下表中数据,根据表中的数据,能否在犯错的概率不超过0.005的前提下认为视力与眼保健操有关系? (3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取8人,进一步调查他们良好的护眼习惯,在这8人中任取2人,记坚持做眼保健操的学生人数为X,求X的分布列和数学期望. 附: 0.10 0.05 0.025 0.010 0.005 k 2.706 3.841 5.024 6.635 7.879 18.(12分)已知圆,定点 ,为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线 (1)求曲线的方程 (2)过点的直线与交于两点,已知点,直线分别与直线交于两点,线段的中点是否在定直线上,若存在,求出该直线方程;若不是,说明理由. 19.(12分)如图,已知椭圆,为其右焦点,直线与椭圆交于两点,点在上,且满足.(点从上到下依次排列) (I)试用表示: (II)证明:原点到直线l的距离为定值. 20.(12分)已知函数 (Ⅰ)若,求曲线在点处的切线方程; (Ⅱ)若在上恒成立,求实数的取值范围; (Ⅲ)若数列的前项和,,求证:数列的前项和. 21.(12分)已知函数. (1)当时,求不等式的解集; (2)若的解集包含,求的取值范围. 22.(10分)某工厂,两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,生产线生产的产品为合格品的概率分别为和. (1)从,生产线上各抽检一件产品,若使得至少有一件合格的概率不低于,求的最小值. (2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的作为的值. ①已知,生产线的不合格产品返工后每件产品可分别挽回损失元和元.若从两条生产线上各随机抽检件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多? ②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件分别获利元、元、元,现从,生产线的最终合格品中各随机抽取件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估算该厂产量件时利润的期望值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值. 【题目详解】 中,, 由正弦定理可得,整理得, 由余弦定理,得. D是AB的中点,且, ,即, 即, ,当且仅当时,等号成立. 的面积, 所以面积的最大值为. 故选:. 【答案点睛】 本题考查正、余弦定理、不等式、三角形面积公式和向量的数量积运算,属于中档题. 2、D 【答案解析】 在等差数列中,利用已知可求得通项公式,进而,借助函数的的单调性可知,当时, 取最大即可求得结果. 【题目详解】 因为,所以,即,又,所以公差,所以,即,因为函数,在时,单调递减,且;在时,单调递减,且.所以数列的最大值是,且,所以数列的最大值是3. 故选:D. 【答案点睛】 本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调性研究数列最值问题,难度较易. 3、C 【答案解析】 设线段的中点为,判断出点的位置,结合双曲线的定义,求得双曲线的离心率. 【题目详解】 设线段的中点为,由于直线的斜率是,而圆,所以.由于是线段的中点,所以,而,根据双曲线的定义可知,即,即. 故选:C 【答案点睛】 本小题主要考查双曲线的定义和离心率的求法,考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题. 4、D 【答案解析】 设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形, 设,得,求出的值,即得解. 【题目详解】 设双曲线C的左焦点为,连接, 由对称性可知四边形是平行四边形, 所以,. 设,则, 又.故, 所以. 故选:D 【答案点睛】 本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平. 5、C 【答案解析】 直接求交集得到答案. 【题目详解】 集合,则. 故选:. 【答案点睛】 本题考查了交集运算,属于简单题. 6、C 【答案解析】 由题得,,又,联立解方程组即可得,,进而得出双曲线方程. 【题目详解】 由题得 ① 又该双曲线的一条渐近线方程为,且被圆x2+y2﹣2cx=0截得的弦长为2, 所以 ② 又 ③ 由①②③可得:,, 所以双曲线的标准方程为. 故选:C 【答案点睛】 本题主要考查了双曲线的简单几何性质,圆的方程的有关计算,考查了学生的计算能力. 7、C 【答案解析】 由条件可看出,则为异面直线与所成的角,可证得三角形中,,解得从而得出异面直线与所成的角. 【题目详解】 连接,,如图: 又,则为异面直线与所成的角. 因为且三棱柱为直三棱柱,∴∴面, ∴, 又,,∴, ∴,解得. 故选C 【答案点睛】 考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题. 8、D 【答案解析】 由抛物线方程可得焦点坐标及准线方程,由抛物线的定义可知,继而可求出,从而可求出的中点的横坐标,即为中点到轴的距离. 【题目详解】 解:由抛物线方程可知,,即,.设 则,即,所以. 所以线段的中点到轴的距离为. 故选:D. 【答案点睛】 本题考查了抛物线的定义,考查了抛物线的方程.本题的关键是由抛物线的定义求得两点横坐标的和. 9、C 【答案解析】 由正弦定理化边为角,由三角函数恒等变换可得. 【题目详解】 ∵,由正弦定理可得, ∴, 三角形中,∴,∴. 故选:C. 【答案点睛】 本题考查正弦定理,考查两角和的正弦公式和诱导公式,掌握正弦定理的边角互化是解题关键. 10、B 【答案解析】 根据图象求得函数的解析式,即可得出函数的解析式,然后求出变换后的函数解析式,结合题意可得出关于的等式,即可得出结果. 【题目详解】 由图象可得,函数的最小正周期为,, , 则,,取, ,则, ,,可得, 当时,. 故选:B. 【答案点睛】 本题考查利用图象求函数解析式,同时也考查了利用函数图象变换求参数,考查计算能力,属于中等题. 11、B 【答案解析】 先用定积分求得阴影部分一半的面积,再根据几何概型概率公式可求得. 【题目详解】 根据题意,阴影部分的面积的一半为:, 于是此点取自阴影部分的概率为. 又,故. 故选B. 【答案点睛】 本题考查了几何概型,定积分的计算以及几何意义,属于中档题. 12、B 【答案解析】 求出的表达式,画出函数图象,结合图象以及二次方程实根的分布,求出的范围即可. 【题目详解】 解:令,则, 则, 故,如图示: 由, 得, 函数恒过,, 由,, 可得,,, 若方程有唯一解, 则或,即或; 当即图象相切时, 根据,, 解得舍去), 则的范围是, 故选:. 【答案点睛】 本题考查函数的零点问题,考查函数方程的转化思想和数形结合思想,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。 13、2 【答案解析】 求出焦点到渐近线的距离就可得到的等式,从而可求得离心率. 【题目详解】 由题意,一条渐近线方程为,即, ∴ ,由得, ∴,,∴. 故答案为:2. 【答案点睛】 本题考查求双曲线的离心率,解题关键是求出焦点到渐近线的距离,从而得出一个关于的等式. 14、 【答案解析】 先利用余弦定理求出,再用正弦定理求出并把转化为与边有关的等式,结合可求的值. 【题目详解】 因为,故,因为,所以. 由正弦定理可得三角形外接圆的半径满足, 所以即. 因为, 解得或(舍). 故答案为:. 【答案点睛】 本题考查正弦定理、余弦定理在解三角形中的应用,注意结合求解目标对所得的方程组变形整合后整体求解,本题属于中档题. 15、 【答案解析】 构造函数,再根据条件确定为奇函数且在上单调递减,最后利用单调性以及奇偶性化简不等式,解得结果. 【题目详解】 依题意,, 令,则,故函数为奇函

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开