温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
上海交大
附属中学
2023
学年
高考
压轴
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
2.( )
A. B. C. D.
3.已知平面平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为( )
A. B.16 C. D.
4.某三棱锥的三视图如图所示,则该三棱锥的体积为
A. B. C.2 D.
5.是虚数单位,则( )
A.1 B.2 C. D.
6.函数的部分图像大致为( )
A. B.
C. D.
7.已知复数(为虚数单位)在复平面内对应的点的坐标是( )
A. B. C. D.
8.已知是过抛物线焦点的弦,是原点,则( )
A.-2 B.-4 C.3 D.-3
9.如图,棱长为的正方体中,为线段的中点,分别为线段和 棱 上任意一点,则的最小值为( )
A. B. C. D.
10.对两个变量进行回归分析,给出如下一组样本数据:,,,,下列函数模型中拟合较好的是( )
A. B. C. D.
11.等差数列中,已知,且,则数列的前项和中最小的是( )
A.或 B. C. D.
12.已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为( )
A. B.3 C.2 D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数,则________;满足的的取值范围为________.
14.若变量,满足约束条件则的最大值为________.
15.若实数,满足不等式组,则的最小值为______.
16.已知,满足约束条件,则的最大值为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(1)求不等式的解集;
(2)若关于的不等式在区间内无解,求实数的取值范围.
18.(12分)传染病的流行必须具备的三个基本环节是:传染源、传播途径和人群易感性.三个环节必须同时存在,方能构成传染病流行.呼吸道飞沫和密切接触传播是新冠状病毒的主要传播途径,为了有效防控新冠状病毒的流行,人们出行都应该佩戴口罩.某地区已经出现了新冠状病毒的感染病人,为了掌握该地区居民的防控意识和防控情况,用分层抽样的方法从全体居民中抽出一个容量为100的样本,统计样本中每个人出行是否会佩戴口罩的情况,得到下面列联表:
戴口罩
不戴口罩
青年人
50
10
中老年人
20
20
(1)能否有的把握认为是否会佩戴口罩出行的行为与年龄有关?
(2)用样本估计总体,若从该地区出行不戴口罩的居民中随机抽取5人,求恰好有2人是青年人的概率.
附:
0.100
0.050
0.010
0.001
2.706
3.841
6.635
10.828
19.(12分)在中,角的对边分别为,且.
(1)求角的大小;
(2)若,求边上的高.
20.(12分)如图,在中,,,点在线段上.
(1)若,求的长;
(2)若,,求的面积.
21.(12分)已知椭圆:的左、右焦点分别为,,焦距为2,且经过点,斜率为的直线经过点,与椭圆交于,两点.
(1)求椭圆的方程;
(2)在轴上是否存在点,使得以,为邻边的平行四边形是菱形?如果存在,求出的取值范围,如果不存在,请说明理由.
22.(10分)已知.
(1)当时,求不等式的解集;
(2)若,,证明:.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
先解不等式化简两个条件,利用集合法判断充分必要条件即可
【题目详解】
解不等式可得,
解绝对值不等式可得,
由于为的子集,
据此可知“”是“”的必要不充分条件.
故选:B
【答案点睛】
本题考查了必要不充分条件的判定,考查了学生数学运算,逻辑推理能力,属于基础题.
2、D
【答案解析】
利用,根据诱导公式进行化简,可得,然后利用两角差的正弦定理,可得结果.
【题目详解】
由
所以
,
所以原式
所以原式
故
故选:D
【答案点睛】
本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.
3、C
【答案解析】
根据与平面所成的角相等,判断出,建立平面直角坐标系,求得点的轨迹方程,由此求得点的轨迹长度.
【题目详解】
由于平面平面,且交线为,,所以平面,平面.所以和分别是直线与平面所成的角,所以,所以,即,所以.以为原点建立平面直角坐标系如下图所示,则,,设(点在第一象限内),由得,即,化简得,由于点在第一象限内,所以点的轨迹是以为圆心,半径为的圆在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以点的轨迹长度为.
故选:C
【答案点睛】
本小题主要考查线面角的概念和运用,考查动点轨迹方程的求法,考查空间想象能力和逻辑推理能力,考查数形结合的数学思想方法,属于难题.
4、A
【答案解析】
由给定的三视图可知,该几何体表示一个底面为一个直角三角形,
且两直角边分别为和,所以底面面积为
高为的三棱锥,所以三棱锥的体积为,故选A.
5、C
【答案解析】
由复数除法的运算法则求出,再由模长公式,即可求解.
【题目详解】
由.
故选:C.
【答案点睛】
本题考查复数的除法和模,属于基础题.
6、A
【答案解析】
根据函数解析式,可知的定义域为,通过定义法判断函数的奇偶性,得出,则为偶函数,可排除选项,观察选项的图象,可知代入,解得,排除选项,即可得出答案.
【题目详解】
解:因为,
所以的定义域为,
则,
∴为偶函数,图象关于轴对称,排除选项,
且当时,,排除选项,所以正确.
故选:A.
【答案点睛】
本题考查由函数解析式识别函数图象,利用函数的奇偶性和特殊值法进行排除.
7、A
【答案解析】
直接利用复数代数形式的乘除运算化简,求得的坐标得出答案.
【题目详解】
解:,
在复平面内对应的点的坐标是.
故选:A.
【答案点睛】
本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.
8、D
【答案解析】
设,,设:,联立方程得到,计算
得到答案.
【题目详解】
设,,故.
易知直线斜率不为,设:,联立方程,
得到,故,故.
故选:.
【答案点睛】
本题考查了抛物线中的向量的数量积,设直线为可以简化运算,是解题的关键 .
9、D
【答案解析】
取中点,过作面,可得为等腰直角三角形,由,可得,当时, 最小,由 ,故,即可求解.
【题目详解】
取中点,过作面,如图:
则,故,
而对固定的点,当时, 最小.
此时由面,可知为等腰直角三角形,,
故.
故选:D
【答案点睛】
本题考查了空间几何体中的线面垂直、考查了学生的空间想象能力,属于中档题.
10、D
【答案解析】
作出四个函数的图象及给出的四个点,观察这四个点在靠近哪个曲线.
【题目详解】
如图,作出A,B,C,D中四个函数图象,同时描出题中的四个点,它们在曲线的两侧,与其他三个曲线都离得很远,因此D是正确选项,
故选:D.
【答案点睛】
本题考查回归分析,拟合曲线包含或靠近样本数据的点越多,说明拟合效果好.
11、C
【答案解析】
设公差为,则由题意可得,解得,可得.令 ,可得 当时,,当时,,由此可得数列前项和中最小的.
【题目详解】
解:等差数列中,已知,且,设公差为,
则,解得 ,
.
令 ,可得,故当时,,当时,,
故数列前项和中最小的是.
故选:C.
【答案点睛】
本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题.
12、D
【答案解析】
本道题结合双曲线的性质以及余弦定理,建立关于a与c的等式,计算离心率,即可.
【题目详解】
结合题意,绘图,结合双曲线性质可以得到PO=MO,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故
对三角形运用余弦定理,得到,
而结合,可得,,代入上式子中,得到
,结合离心率满足,即可得出,故选D.
【答案点睛】
本道题考查了余弦定理以及双曲线的性质,难度偏难.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
首先由分段函数的解析式代入求值即可得到,分和两种情况讨论可得;
【题目详解】
解:因为,
所以,
∵,
∴当时,满足题意,∴;
当时,由,
解得.综合可知:满足的的取值范围为.
故答案为:;.
【答案点睛】
本题考查分段函数的性质的应用,分类讨论思想,属于基础题.
14、7
【答案解析】
画出不等式组表示的平面区域,数形结合,即可容易求得目标函数的最大值.
【题目详解】
作出不等式组所表示的平面区域,如下图阴影部分所示.
观察可知,当直线过点时,有最大值,.
故答案为:.
【答案点睛】
本题考查二次不等式组与平面区域、线性规划,主要考查推理论证能力以及数形结合思想,属基础题.
15、5
【答案解析】
根据题意,画出图像,数形结合,将目标转化为求动直线纵截距的最值,即可求解
【题目详解】
画出不等式组,表示的平面区域如图阴影区域所示,
令,则.分析知,当,时,取得最小值,且.
【答案点睛】
本题考查线性规划问题,属于基础题
16、
【答案解析】
根据题意,画出可行域,将目标函数看成可行域内的点与原点距离的平方,利用图象即可求解.
【题目详解】
可行域如图所示,
易知当,时,的最大值为.
故答案为:9.
【答案点睛】
本题考查了利用几何法解决非线性规划问题,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2).
【答案解析】
(1)只需分,,三种情况讨论即可;
(2)在区间上恒成立,转化为,只需求出即可.
【题目详解】
(1)当时,,此时不等式无解;当时,,
由得;当时,,由得,
综上,不等式的解集为;
(2)依题意,在区间上恒成立,则,当时,
;当时,,所以当时,,
由得或,所以实数的取值范围为.
【答案点睛】
本题考查绝对值不等式的解法、不等式恒成立问题,考查学生分类讨论与转化与化归的思想,是一道基础题.
18、(1)有的把握认为是否戴口罩出行的行为与年龄有关.
(2)
【答案解析】
(1) 根据列联表和独立性检验的公式计算出观测值,从而由参考数据作出判断.
(2) 因为样本中出行不戴口罩的居民有30人,其中年轻人有10人,用样本估计总体,则出行不戴口罩的年轻人的概率为,是老年人的概率为.根据独立重复事件的概率公式即可求得结果.
【题目详解】
(1)由题意可知,
有的把握认为是否戴口罩出行的行为与年龄有关.
(2)由样本估计总体,出行不戴口罩的年轻人的概率为,是老年人的概率为.
人未戴口罩,恰有2人