分享
云南省昭通市实验中学2023学年高考临考冲刺数学试卷(含解析).doc
下载文档

ID:21818

大小:1.71MB

页数:19页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
云南省 昭通市 实验 中学 2023 学年 高考 冲刺 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.中,如果,则的形状是( ) A.等边三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形 3.设集合则( ) A. B. C. D. 4.在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?( ) A. B. C. D. 5.已知函数的图象如图所示,则下列说法错误的是( ) A.函数在上单调递减 B.函数在上单调递增 C.函数的对称中心是 D.函数的对称轴是 6.抛物线的焦点为,则经过点与点且与抛物线的准线相切的圆的个数有( ) A.1个 B.2个 C.0个 D.无数个 7.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( ) A. B. C. D. 8.把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么所得图象的一个对称中心为( ) A. B. C. D. 9.台球是一项国际上广泛流行的高雅室内体育运动,也叫桌球(中国粤港澳地区的叫法)、撞球(中国台湾地区的叫法)控制撞球点、球的旋转等控制母球走位是击球的一项重要技术,一次台球技术表演节目中,在台球桌上,画出如图正方形ABCD,在点E,F处各放一个目标球,表演者先将母球放在点A处,通过击打母球,使其依次撞击点E,F处的目标球,最后停在点C处,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,则该正方形的边长为( ) A.50cm B.40cm C.50cm D.20cm 10.已知双曲线:的左、右两个焦点分别为,,若存在点满足,则该双曲线的离心率为( ) A.2 B. C. D.5 11.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为( ) A. B. C. D. 12.已知三棱锥且平面,其外接球体积为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.若实数,满足,则的最小值为__________. 14.定义在封闭的平面区域内任意两点的距离的最大值称为平面区域的“直径”.已知锐角三角形的三个点,,,在半径为的圆上,且,分别以各边为直径向外作三个半圆,这三个半圆和构成平面区域,则平面区域的“直径”的最大值是__________. 15.函数的定义域为__________. 16.已知椭圆与双曲线(,)有相同的焦点,其左、右焦点分别为、,若椭圆与双曲线在第一象限内的交点为,且,则双曲线的离心率为__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)设数列是等差数列,其前项和为,且,. (1)求数列的通项公式; (2)证明:. 18.(12分)已知函数. (1)设,若存在两个极值点,,且,求证:; (2)设,在不单调,且恒成立,求的取值范围.(为自然对数的底数). 19.(12分)已知数列满足,且. (1)求证:数列是等差数列,并求出数列的通项公式; (2)求数列的前项和. 20.(12分)已知,,分别为内角,,的对边,且. (1)证明:; (2)若的面积,,求角. 21.(12分)在中,角A,B,C的对边分别是a,b,c,且向量与向量共线. (1)求B; (2)若,,且,求BD的长度. 22.(10分)设的内角的对边分别为,已知. (1)求; (2)若为锐角三角形,求的取值范围. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 根据复数运算,求得,再求其对应点即可判断. 【题目详解】 ,故其对应点的坐标为. 其位于第四象限. 故选:D. 【答案点睛】 本题考查复数的运算,以及复数对应点的坐标,属综合基础题. 2、B 【答案解析】 化简得lgcosA=lg=﹣lg2,即,结合, 可求,得代入sinC=sinB,从而可求C,B,进而可判断. 【题目详解】 由,可得lgcosA==﹣lg2,∴, ∵,∴,,∴sinC=sinB==,∴tanC=,C=,B=. 故选:B 【答案点睛】 本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题. 3、C 【答案解析】 直接求交集得到答案. 【题目详解】 集合,则. 故选:. 【答案点睛】 本题考查了交集运算,属于简单题. 4、D 【答案解析】 设羊户赔粮升,马户赔粮升,牛户赔粮升,易知成等比数列,,结合等比数列的性质可求出答案. 【题目详解】 设羊户赔粮升,马户赔粮升,牛户赔粮升,则成等比数列,且公比,则,故,,. 故选:D. 【答案点睛】 本题考查数列与数学文化,考查了等比数列的性质,考查了学生的运算求解能力,属于基础题. 5、B 【答案解析】 根据图象求得函数的解析式,结合余弦函数的单调性与对称性逐项判断即可. 【题目详解】 由图象可得,函数的周期,所以. 将点代入中,得,解得,由,可得,所以. 令,得, 故函数在上单调递减, 当时,函数在上单调递减,故A正确; 令,得, 故函数在上单调递增. 当时,函数在上单调递增,故B错误; 令,得,故函数的对称中心是,故C正确; 令,得,故函数的对称轴是,故D正确. 故选:B. 【答案点睛】 本题考查由图象求余弦型函数的解析式,同时也考查了余弦型函数的单调性与对称性的判断,考查推理能力与计算能力,属于中等题. 6、B 【答案解析】 圆心在的中垂线上,经过点,且与相切的圆的圆心到准线的距离与到焦点的距离相等,圆心在抛物线上,直线与抛物线交于2个点,得到2个圆. 【题目详解】 因为点在抛物线上, 又焦点,, 由抛物线的定义知,过点、且与相切的圆的圆心即为线段的垂直平分线与抛物线的交点, 这样的交点共有2个, 故过点、且与相切的圆的不同情况种数是2种. 故选:. 【答案点睛】 本题主要考查抛物线的简单性质,本题解题的关键是求出圆心的位置,看出圆心必须在抛物线上,且在垂直平分线上. 7、A 【答案解析】 首先求出样本空间样本点为个,再利用分类计数原理求出三个正面向上为连续的3个“1”的样本点个数,再求出重复数量,可得事件的样本点数,根据古典概型的概率计算公式即可求解. 【题目详解】 样本空间样本点为个, 具体分析如下: 记正面向上为1,反面向上为0,三个正面向上为连续的3个“1”, 有以下3种位置1__ __,__1__,__ __1. 剩下2个空位可是0或1,这三种排列的所有可能分别都是, 但合并计算时会有重复,重复数量为, 事件的样本点数为:个. 故不同的样本点数为8个,. 故选:A 【答案点睛】 本题考查了分类计数原理与分步计数原理,古典概型的概率计算公式,属于基础题 8、D 【答案解析】 试题分析:把函数图象上各点的横坐标伸长为原来的倍(纵坐标不变),可得的图象;再将图象向右平移个单位,可得的图象,那么所得图象的一个对称中心为,故选D. 考点:三角函数的图象与性质. 9、D 【答案解析】 过点做正方形边的垂线,如图,设,利用直线三角形中的边角关系,将用表示出来,根据,列方程求出,进而可得正方形的边长. 【题目详解】 过点做正方形边的垂线,如图, 设,则,, 则 , 因为,则, 整理化简得,又, 得 , . 即该正方形的边长为. 故选:D. 【答案点睛】 本题考查直角三角形中的边角关系,关键是要构造直角三角形,是中档题. 10、B 【答案解析】 利用双曲线的定义和条件中的比例关系可求. 【题目详解】 .选B. 【答案点睛】 本题主要考查双曲线的定义及离心率,离心率求解时,一般是把已知条件,转化为a,b,c的关系式. 11、C 【答案解析】 先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的情况,由此可求解出对应的概率. 【题目详解】 所有的情况数有:种, 3个数中至少有2个阳数且能构成等差数列的情况有: ,共种, 所以目标事件的概率. 故选:C. 【答案点睛】 本题考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通过古典概型的概率求解方法进行分析;当情况数较多时,可考虑用排列数、组合数去计算. 12、A 【答案解析】 由,平面,可将三棱锥还原成长方体,则三棱锥的外接球即为长方体的外接球,进而求解. 【题目详解】 由题,因为,所以, 设,则由,可得,解得, 可将三棱锥还原成如图所示的长方体, 则三棱锥的外接球即为长方体的外接球,设外接球的半径为,则,所以, 所以外接球的体积. 故选:A 【答案点睛】 本题考查三棱锥的外接球体积,考查空间想象能力. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 由约束条件先画出可行域,然后求目标函数的最小值. 【题目详解】 由约束条件先画出可行域,如图所示,由,即,当平行线经过点时取到最小值,由可得,此时,所以的最小值为. 故答案为. 【答案点睛】 本题考查了线性规划的知识,解题的一般步骤为先画出可行域,然后改写目标函数,结合图形求出最值,需要掌握解题方法. 14、 【答案解析】 先找到平面区域内任意两点的最大值为,再利用三角恒等变换化简即可得到最大值. 【题目详解】 由已知及正弦定理,得,所以, ,取AB中点E,AC中点F,BC中点G, 如图所示 显然平面区域任意两点距离最大值为, 而 , 当且仅当时,等号成立. 故答案为:. 【答案点睛】 本题考查正弦定理在平面几何中的应用问题,涉及到距离的最值问题,在处理这类问题时,一定要数形结合,本题属于中档题. 15、 【答案解析】 根据函数成立的条件列不等式组,求解即可得定

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开