分享
2023届山西省大同市第三中学高考数学全真模拟密押卷(含解析).doc
下载文档

ID:21810

大小:1.94MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 山西省 大同市 第三中学 高考 数学 模拟 密押卷 解析
2023学年高考数学模拟测试卷 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.如图是一个几何体的三视图,则这个几何体的体积为( ) A. B. C. D. 2.已知方程表示的曲线为的图象,对于函数有如下结论:①在上单调递减;②函数至少存在一个零点;③的最大值为;④若函数和图象关于原点对称,则由方程所确定;则正确命题序号为( ) A.①③ B.②③ C.①④ D.②④ 3.已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则( ) A.PA,PB,PC两两垂直 B.三棱锥P-ABC的体积为 C. D.三棱锥P-ABC的侧面积为 4.已知函数若关于的方程有六个不相等的实数根,则实数的取值范围为( ) A. B. C. D. 5.已知,,为圆上的动点,,过点作与垂直的直线交直线于点,若点的横坐标为,则的取值范围是( ) A. B. C. D. 6.音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数构成乐音的是( ) A. B. C. D. 7.已知偶函数在区间内单调递减,,,,则,,满足( ) A. B. C. D. 8.已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点.若双曲线的离心率为2,三角形AOB的面积为,则p=( ). A.1 B. C.2 D.3 9.在中,,,,点,分别在线段,上,且,,则( ). A. B. C.4 D.9 10.展开式中x2的系数为( ) A.-1280 B.4864 C.-4864 D.1280 11.若复数满足,复数的共轭复数是,则( ) A.1 B.0 C. D. 12.已知复数z=(1+2i)(1+ai)(a∈R),若z∈R,则实数a=( ) A. B. C.2 D.﹣2 二、填空题:本题共4小题,每小题5分,共20分。 13.已知随机变量服从正态分布,若,则_________. 14.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_______. 15.经过椭圆中心的直线与椭圆相交于、两点(点在第一象限),过点作轴的垂线,垂足为点.设直线与椭圆的另一个交点为.则的值是________________. 16.如图,在中,,,,点在边上,且,将射线绕着逆时针方向旋转,并在所得射线上取一点,使得,连接,则的面积为__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)某生物硏究小组准备探究某地区蜻蜓的翼长分布规律,据统计该地区蜻蜓有两种,且这两种的个体数量大致相等,记种蜻蜓和种蜻蜓的翼长(单位:)分别为随机变量,其中服从正态分布,服从正态分布. (Ⅰ)从该地区的蜻蜓中随机捕捉一只,求这只蜻蜓的翼长在区间的概率; (Ⅱ)记该地区蜻蜓的翼长为随机变量,若用正态分布来近似描述的分布,请你根据(Ⅰ)中的结果,求参数和的值(精确到0.1); (Ⅲ)在(Ⅱ)的条件下,从该地区的蜻蜓中随机捕捉3只,记这3只中翼长在区间的个数为,求的分布列及数学期望(分布列写出计算表达式即可). 注:若,则,,. 18.(12分)已知函数. (1)解不等式; (2)记函数的最小值为,正实数、满足,求证:. 19.(12分)已知函数,. (1)当时,讨论函数的单调性; (2)若,当时,函数,求函数的最小值. 20.(12分)已知为各项均为整数的等差数列,为的前项和,若为和的等比中项,. (1)求数列的通项公式; (2)若,求最大的正整数,使得. 21.(12分)已知函数. (1)若在上为单调函数,求实数a的取值范围: (2)若,记的两个极值点为,,记的最大值与最小值分别为M,m,求的值. 22.(10分)据《人民网》报道,美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.据统计,中国新增绿化面积的来自于植树造林,下表是中国十个地区在去年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和) 单位:公顷 地区 造林总面积 造林方式 人工造林 飞播造林 新封山育林 退化林修复 人工更新 内蒙 618484 311052 74094 136006 90382 6950 河北 583361 345625 33333 13507 65653 3643 河南 149002 97647 13429 22417 15376 133 重庆 226333 100600 62400 63333 陕西 297642 184108 33602 63865 16067 甘肃 325580 260144 57438 7998 新疆 263903 118105 6264 126647 10796 2091 青海 178414 16051 159734 2629 宁夏 91531 58960 22938 8298 1335 北京 19064 10012 4000 3999 1053 (1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区; (2)在这十个地区中,任选一个地区,求该地区新封山育林面积占造林总面积的比值超过的概率; (3)在这十个地区中,从退化林修复面积超过一万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.再由球与圆柱体积公式求解. 【题目详解】 由三视图还原原几何体如图, 该几何体为组合体,上半部分为半球,下半部分为圆柱, 半球的半径为1,圆柱的底面半径为1,高为1. 则几何体的体积为. 故选:. 【答案点睛】 本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平. 2、C 【答案解析】 分四类情况进行讨论,然后画出相对应的图象,由图象可以判断所给命题的真假性. 【题目详解】 (1)当时,,此时不存在图象; (2)当时,,此时为实轴为轴的双曲线一部分; (3)当时,,此时为实轴为轴的双曲线一部分; (4)当时,,此时为圆心在原点,半径为1的圆的一部分; 画出的图象, 由图象可得: 对于①,在上单调递减,所以①正确; 对于②,函数与的图象没有交点,即没有零点,所以②错误; 对于③,由函数图象的对称性可知③错误; 对于④,函数和图象关于原点对称,则中用代替,用代替,可得,所以④正确. 故选:C 【答案点睛】 本题主要考查了双曲线的简单几何性质,函数的图象与性质,函数的零点概念,考查了数形结合的数学思想. 3、C 【答案解析】 根据三视图,可得三棱锥P-ABC的直观图,然后再计算可得. 【题目详解】 解:根据三视图,可得三棱锥P-ABC的直观图如图所示, 其中D为AB的中点,底面ABC. 所以三棱锥P-ABC的体积为, ,,, ,、不可能垂直, 即不可能两两垂直, ,. 三棱锥P-ABC的侧面积为. 故正确的为C. 故选:C. 【答案点睛】 本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题. 4、B 【答案解析】 令,则,由图象分析可知在上有两个不同的根,再利用一元二次方程根的分布即可解决. 【题目详解】 令,则,如图 与顶多只有3个不同交点,要使关于的方程有 六个不相等的实数根,则有两个不同的根, 设由根的分布可知, ,解得. 故选:B. 【答案点睛】 本题考查复合方程根的个数问题,涉及到一元二次方程根的分布,考查学生转化与化归和数形结合的思想,是一道中档题. 5、A 【答案解析】 由题意得,即可得点M的轨迹为以A,B为左、右焦点,的双曲线,根据双曲线的性质即可得解. 【题目详解】 如图,连接OP,AM, 由题意得, 点M的轨迹为以A,B为左、右焦点,的双曲线, . 故选:A. 【答案点睛】 本题考查了双曲线定义的应用,考查了转化化归思想,属于中档题. 6、C 【答案解析】 由基本音的谐波的定义可得,利用可得,即可判断选项. 【题目详解】 由题,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波, 由,可知若,则必有, 故选:C 【答案点睛】 本题考查三角函数的周期与频率,考查理解分析能力. 7、D 【答案解析】 首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小 【题目详解】 因为偶函数在减,所以在上增, ,,,∴. 故选:D 【答案点睛】 本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题. 8、C 【答案解析】 试题分析:抛物线的准线为,双曲线的离心率为2,则, ,渐近线方程为,求出交点,, ,则;选C 考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程; 9、B 【答案解析】 根据题意,分析可得,由余弦定理求得的值,由可得结果. 【题目详解】 根据题意,,则 在中,又, 则 则 则 则 故选:B 【答案点睛】 此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目. 10、A 【答案解析】 根据二项式展开式的公式得到具体为:化简求值即可. 【题目详解】 根据二项式的展开式得到可以第一个括号里出项,第二个括号里出项,或者第一个括号里出,第二个括号里出,具体为: 化简得到-1280 x2 故得到答案为:A. 【答案点睛】 求二项展开式有关问题的常见类型及解题策略: (1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可. (2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数. 11、C 【答案解析】 根据复数代数形式的运算法则求出,再根据共轭复数的概念求解即可. 【题目详解】 解:∵, ∴, 则, ∴, 故选:C. 【答案点睛】 本题主要考查复数代数形式的运算法则,考查共轭复数的概念,属于基础题. 12、D

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开