温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
宁夏
平罗
中学
高考
前提
分数
仿真
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是( )
A. B.
C. D.
2.执行程序框图,则输出的数值为( )
A. B. C. D.
3.已知实数,则的大小关系是( )
A. B. C. D.
4.设是等差数列的前n项和,且,则( )
A. B. C.1 D.2
5.已知函数,则下列结论中正确的是
①函数的最小正周期为;
②函数的图象是轴对称图形;
③函数的极大值为;
④函数的最小值为.
A.①③ B.②④
C.②③ D.②③④
6.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )
A. B. C. D.
7.曲线在点处的切线方程为,则( )
A. B. C.4 D.8
8.函数的图象大致为
A. B. C. D.
9.在四边形中,,,,,,点在线段的延长线上,且,点在边所在直线上,则的最大值为( )
A. B. C. D.
10.已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是( )
A. B. C. D.
11.小明有3本作业本,小波有4本作业本,将这7本作业本混放在-起,小明从中任取两本.则他取到的均是自己的作业本的概率为( )
A. B. C. D.
12.若复数满足(是虚数单位),则的虚部为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数f(x)=若关于x的方程f(x)=kx有两个不同的实根,则实数k的取值范围是________.
14.已知双曲线的左焦点为,、为双曲线上关于原点对称的两点,的中点为,的中点为,的中点为,若,且直线的斜率为,则__________,双曲线的离心率为__________.
15.六位同学坐在一排,现让六位同学重新坐,恰有两位同学坐自己原来的位置,则不同的坐法有________种(用数字回答).
16.已知函数有且只有一个零点,则实数的取值范围为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100 人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.
(1)估计这100人体重数据的平均值和样本方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)
(2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;
(3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.
18.(12分)某生物硏究小组准备探究某地区蜻蜓的翼长分布规律,据统计该地区蜻蜓有两种,且这两种的个体数量大致相等,记种蜻蜓和种蜻蜓的翼长(单位:)分别为随机变量,其中服从正态分布,服从正态分布.
(Ⅰ)从该地区的蜻蜓中随机捕捉一只,求这只蜻蜓的翼长在区间的概率;
(Ⅱ)记该地区蜻蜓的翼长为随机变量,若用正态分布来近似描述的分布,请你根据(Ⅰ)中的结果,求参数和的值(精确到0.1);
(Ⅲ)在(Ⅱ)的条件下,从该地区的蜻蜓中随机捕捉3只,记这3只中翼长在区间的个数为,求的分布列及数学期望(分布列写出计算表达式即可).
注:若,则,,.
19.(12分)在一次电视节目的答题游戏中,题型为选择题,只有“A”和“B”两种结果,其中某选手选择正确的概率为p,选择错误的概率为q,若选择正确则加1分,选择错误则减1分,现记“该选手答完n道题后总得分为”.
(1)当时,记,求的分布列及数学期望;
(2)当,时,求且的概率.
20.(12分)2019年入冬时节,长春市民为了迎接2023年北京冬奥会,增强身体素质,积极开展冰上体育锻炼.现从速滑项目中随机选出100名参与者,并由专业的评估机构对他们的锻炼成果进行评估打分(满分为100分)并且认为评分不低于80分的参与者擅长冰上运动,得到如图所示的频率分布直方图:
(1)求的值;
(2)将选取的100名参与者的性别与是否擅长冰上运动进行统计,请将下列列联表补充完整,并判断能否在犯错误的概率在不超过0.01的前提下认为擅长冰上运动与性别有关系?
擅长
不擅长
合计
男性
30
女性
50
合计
100
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(,其中)
21.(12分)如图,在四棱锥中,底面是边长为2的菱形,,.
(1)证明:平面平面ABCD;
(2)设H在AC上,,若,求PH与平面PBC所成角的正弦值.
22.(10分)已知为等差数列,为等比数列,的前n项和为,满足,,,.
(1)求数列和的通项公式;
(2)令,数列的前n项和,求.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
作出三视图所表示几何体的直观图,可得直观图为直三棱柱,并且底面为等腰直角三角形,即可求得外接球的半径,即可得外接球的体积.
【题目详解】
如图为几何体的直观图,上下底面为腰长为的等腰直角三角形,三棱柱的高为4,其外接球半径为,所以体积为.
故选:C
【答案点睛】
本题考查三视图还原几何体的直观图、球的体积公式,考查空间想象能力、运算求解能力,求解时注意球心的确定.
2、C
【答案解析】
由题知:该程序框图是利用循环结构计算并输出变量的值,计算程序框图的运行结果即可得到答案.
【题目详解】
,,,,,满足条件,
,,,,满足条件,
,,,,满足条件,
,,,,满足条件,
,,,,不满足条件,
输出.
故选:C
【答案点睛】
本题主要考查程序框图中的循环结构,属于简单题.
3、B
【答案解析】
根据,利用指数函数对数函数的单调性即可得出.
【题目详解】
解:∵,
∴,,.
∴.
故选:B.
【答案点睛】
本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题.
4、C
【答案解析】
利用等差数列的性质化简已知条件,求得的值.
【题目详解】
由于等差数列满足,所以,,.
故选:C
【答案点睛】
本小题主要考查等差数列的性质,属于基础题.
5、D
【答案解析】
因为,所以①不正确;
因为,所以,
,所以,
所以函数的图象是轴对称图形,②正确;
易知函数的最小正周期为,因为函数的图象关于直线对称,所以只需研究函数在上的极大值与最小值即可.当时,,且,令,得,可知函数在处取得极大值为,③正确;
因为,所以,所以函数的最小值为,④正确.
故选D.
6、C
【答案解析】
令圆的半径为1,则,故选C.
7、B
【答案解析】
求函数导数,利用切线斜率求出,根据切线过点求出即可.
【题目详解】
因为,
所以,
故,
解得,
又切线过点,
所以,解得,
所以,
故选:B
【答案点睛】
本题主要考查了导数的几何意义,切线方程,属于中档题.
8、D
【答案解析】
由题可得函数的定义域为,
因为,所以函数为奇函数,排除选项B;
又,,所以排除选项A、C,故选D.
9、A
【答案解析】
依题意,如图以为坐标原点建立平面直角坐标系,表示出点的坐标,根据求出的坐标,求出边所在直线的方程,设,利用坐标表示,根据二次函数的性质求出最大值.
【题目详解】
解:依题意,如图以为坐标原点建立平面直角坐标系,由,,,,
,,,
因为点在线段的延长线上,设,
解得
,
所在直线的方程为
因为点在边所在直线上,故设
当时
故选:
【答案点睛】
本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.
10、A
【答案解析】
先根据奇函数求出m的值,然后结合单调性求解不等式.
【题目详解】
据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.
【答案点睛】
本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.
11、A
【答案解析】
利用计算即可,其中表示事件A所包含的基本事件个数,为基本事件总数.
【题目详解】
从7本作业本中任取两本共有种不同的结果,其中,小明取到的均是自己的作业本有种不同结果,
由古典概型的概率计算公式,小明取到的均是自己的作业本的概率为.
故选:A.
【答案点睛】
本题考查古典概型的概率计算问题,考查学生的基本运算能力,是一道基础题.
12、A
【答案解析】
由得,然后分子分母同时乘以分母的共轭复数可得复数,从而可得的虚部.
【题目详解】
因为,
所以,
所以复数的虚部为.
故选A.
【答案点睛】
本题考查了复数的除法运算和复数的概念,属于基础题.复数除法运算的方法是分子分母同时乘以分母的共轭复数,转化为乘法运算.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由图可知,当直线y=kx在直线OA与x轴(不含它们)之间时,y=kx与y=f(x)的图像有两个不同交点,即方程有两个不相同的实根.
14、
【答案解析】
设,,根据中点坐标公式可得坐标,利用可得到点坐标所满足的方程,结合直线斜率可求得,进而求得;将点坐标代入双曲线方程,结合焦点坐标可求得,进而得到离心率.
【题目详解】
左焦点为,双曲线的半焦距.
设,,,,
,,即,,即,
又直线斜率为,即,,,
,
在双曲线上,,即,
结合可解得:,,离心率.
故答案为:;.
【答案点睛】
本题考查直线与双曲线的综合应用问题,涉及到直线截双曲线所得线段长度的求解、双曲线离心率的求解问题;关键是能够通过设点的方式,结合直线斜率、垂直关系、点在双曲线上来构造方程组求得所需变量的值.
15、135
【答案解析】
根据题意先确定2个人位置不变,共有种选择,再确定4个人坐4个位置,但是不能坐原来的位置,计算得到答案.
【题目详解】
根据题意先确定2个人位置不变,共有种选择.
再确定4个人坐4个位置,但是不能坐原来的位置,共有种选择,
故不同的坐法有.
故答案为:.
【答案点睛】
本题考查了分步乘法原理,意在考查学生的计算能力和应用能力.
16、
【答案解析】
当时,转化条件得有唯一实数根,令,通过求导得到的单调性后数形结合即可得解.
【题目详解】
当时,,故不是函数的零点;
当时,即,
令,,
,
当时,;当时,,
的单调减区间为,增区间为,
又 ,可作出的草图,如图:
则要使有唯一实数根,则.
故答案为:.
【答案点睛】
本题考查了导数的应用,考查了转化化归思想和数形结合思想,属于难题.
三、解答题:共7