温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
黑龙江省
肇东
第一
中学
高考
数学
模拟
密押卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如下的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为176,320,则输出的a为( )
A.16 B.18 C.20 D.15
2.已知双曲线的左右焦点分别为,,以线段为直径的圆与双曲线在第二象限的交点为,若直线与圆相切,则双曲线的渐近线方程是( )
A. B. C. D.
3.已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的( )
A. B. C. D.
4.已知直线与直线则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
5.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).
A.6500元 B.7000元 C.7500元 D.8000元
6.已知,是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为( )
A. B. C.8 D.6
7.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.
甲:我的成绩比乙高.
乙:丙的成绩比我和甲的都高.
丙:我的成绩比乙高.
成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为
A.甲、乙、丙 B.乙、甲、丙
C.丙、乙、甲 D.甲、丙、乙
8.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有( )
A.12种 B.18种 C.24种 D.64种
9.在展开式中的常数项为
A.1 B.2 C.3 D.7
10.已知集合的所有三个元素的子集记为.记为集合中的最大元素,则( )
A. B. C. D.
11.在平行四边形中,若则( )
A. B. C. D.
12.胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形.研究发现,该金字塔底面周长除以倍的塔高,恰好为祖冲之发现的密率.设胡夫金字塔的高为,假如对胡夫金字塔进行亮化,沿其侧棱和底边布设单条灯带,则需要灯带的总长度约为
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有____种.(用数字作答)
14.已知实数,满足则的取值范围是______.
15.的展开式中,常数项为______;系数最大的项是______.
16.设函数,若存在实数m,使得关于x的方程有4个不相等的实根,且这4个根的平方和存在最小值,则实数a的取值范围是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,三棱台中, 侧面与侧面是全等的梯形,若,且.
(Ⅰ)若,,证明:∥平面;
(Ⅱ)若二面角为,求平面与平面所成的锐二面角的余弦值.
18.(12分)已知函数f(x)=|x-2|-|x+1|.
(Ⅰ)解不等式f(x)>1;
(Ⅱ)当x>0时,若函数g(x)(a>0)的最小值恒大于f(x),求实数a的取值范围.
19.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)求曲线C的极坐标方程和直线l的直角坐标方程;
(2)若射线与曲线C交于点A(不同于极点O),与直线l交于点B,求的最大值.
20.(12分)已知.
(1)解不等式;
(2)若均为正数,且,求的最小值.
21.(12分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).
(1)请用角表示清洁棒的长;
(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.
22.(10分)已知正实数满足 .
(1)求 的最小值.
(2)证明:
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
根据题意可知最后计算的结果为的最大公约数.
【题目详解】
输入的a,b分别为,,根据流程图可知最后计算的结果为的最大公约数,按流程图计算,,,,,,,易得176和320的最大公约数为16,
故选:A.
【答案点睛】
本题考查的是利用更相减损术求两个数的最大公约数,难度较易.
2、B
【答案解析】
先设直线与圆相切于点,根据题意,得到,再由,根据勾股定理求出,从而可得渐近线方程.
【题目详解】
设直线与圆相切于点,
因为是以圆的直径为斜边的圆内接三角形,所以,
又因为圆与直线的切点为,所以,
又,所以,
因此,
因此有,
所以,因此渐近线的方程为.
故选B
【答案点睛】
本题主要考查双曲线的渐近线方程,熟记双曲线的简单性质即可,属于常考题型.
3、C
【答案解析】
试题分析:通过对以下四个四棱锥的三视图对照可知,只有选项C是符合要求的.
考点:三视图
4、B
【答案解析】
利用充分必要条件的定义可判断两个条件之间的关系.
【题目详解】
若,则,故或,
当时,直线,直线 ,此时两条直线平行;
当时,直线,直线 ,此时两条直线平行.
所以当时,推不出,故“”是“”的不充分条件,
当时,可以推出,故“”是“”的必要条件,
故选:B.
【答案点睛】
本题考查两条直线的位置关系以及必要不充分条件的判断,前者应根据系数关系来考虑,后者依据两个条件之间的推出关系,本题属于中档题.
5、D
【答案解析】
设目前该教师的退休金为x元,利用条形图和折线图列出方程,求出结果即可.
【题目详解】
设目前该教师的退休金为x元,则由题意得:6000×15%﹣x×10%=1.解得x=2.
故选D.
【答案点睛】
本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.
6、C
【答案解析】
由椭圆的定义以及双曲线的定义、离心率公式化简,结合基本不等式即可求解.
【题目详解】
设椭圆的长半轴长为,双曲线的半实轴长为,半焦距为,
则,,设
由椭圆的定义以及双曲线的定义可得:
,
则
当且仅当时,取等号.
故选:C.
【答案点睛】
本题主要考查了椭圆的定义以及双曲线的定义、离心率公式,属于中等题.
7、A
【答案解析】
利用逐一验证的方法进行求解.
【题目详解】
若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.
【答案点睛】
本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.
8、C
【答案解析】
根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.
【题目详解】
解:根据题意,分2步进行分析:
①,将4人分成3组,有种分法;
②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,
将剩下的2组全排列,安排其他的2项工作,有种情况,
此时有种情况,
则有种不同的安排方法;
故选:C.
【答案点睛】
本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.
9、D
【答案解析】
求出展开项中的常数项及含的项,问题得解。
【题目详解】
展开项中的常数项及含的项分别为:
,,
所以展开式中的常数项为:.
故选:D
【答案点睛】
本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。
10、B
【答案解析】
分类讨论,分别求出最大元素为3,4,5,6的三个元素子集的个数,即可得解.
【题目详解】
集合含有个元素的子集共有,所以.
在集合中:
最大元素为的集合有个;
最大元素为的集合有;
最大元素为的集合有;
最大元素为的集合有;
所以.
故选:.
【答案点睛】
此题考查集合相关的新定义问题,其本质在于弄清计数原理,分类讨论,分别求解.
11、C
【答案解析】
由,,利用平面向量的数量积运算,先求得利用平行四边形的性质可得结果.
【题目详解】
如图所示,
平行四边形中, ,
,
,
,
因为,
所以
,
,
所以,故选C.
【答案点睛】
本题主要考查向量的几何运算以及平面向量数量积的运算法则,属于中档题. 向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).
12、D
【答案解析】
设胡夫金字塔的底面边长为,由题可得,所以,
该金字塔的侧棱长为,
所以需要灯带的总长度约为,故选D.
二、填空题:本题共4小题,每小题5分,共20分。
13、36
【答案解析】
先优先考虑甲、乙两人不相邻的排法,在此条件下,计算甲不排在两端的排法,最后相减即可得到结果.
【题目详解】
由题意得5人排成一排,甲、乙两人不相邻,有种排法,其中甲排在两端,有种排法,则6人排成一排,甲、乙两人不相邻,且甲不排在两端,共有(种)排法.
所以本题答案为36.
【答案点睛】
排列、组合问题由于其思想方法独特,计算量庞大,对结果的检验困难,所以在解决这类问题时就要遵循一定的解题原则,如特殊元素、位置优先原则、先取后排原则、先分组后分配原则、正难则反原则等,只有这样我们才能有明确的解题方向.同时解答组合问题时必须心思细腻、考虑周全,这样才能做到不重不漏,正确解题.
14、
【答案解析】
根据约束条件画出可行域,即可由直线的平移方法求得的取值范围.
【题目详解】
.
由题意,画出约束条件表示的平面区域如下图所示,
令,则
如图所示,图中直线所示的两个位置为的临界位置,
根据几何关系可得与轴的两个交点分别为,
所以的取值范围为.
故答案为:
【答案点睛】
本题考查了非线性约束条件下线性规划的简单应用,由数形结合法求线性目标函数的取值范围,属于中档题.
15、
【答案解析】
求出二项展开式的通项,令指数为零,求出参数的值,代入可得出展开式中的常数项;求出项的系数,利用作商法可求出系数最大的项.
【题目详解】
的展开式的通项为,
令,得,所以,展开式中的常数项为;
令,令,即,
解得,,,因此,展