温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
昌吉
州行知
学校
高考
前提
分数
仿真
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图是甲、乙两位同学在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误的是( )
A.甲得分的平均数比乙大 B.甲得分的极差比乙大
C.甲得分的方差比乙小 D.甲得分的中位数和乙相等
2.已知 ,,且是的充分不必要条件,则的取值范围是( )
A. B. C. D.
3.已知底面为边长为的正方形,侧棱长为的直四棱柱中,是上底面上的动点.给出以下四个结论中,正确的个数是( )
①与点距离为的点形成一条曲线,则该曲线的长度是;
②若面,则与面所成角的正切值取值范围是;
③若,则在该四棱柱六个面上的正投影长度之和的最大值为.
A. B. C. D.
4.已知数列,,,…,是首项为8,公比为得等比数列,则等于( )
A.64 B.32 C.2 D.4
5.已知集合,,,则( )
A. B. C. D.
6.若直线不平行于平面,且,则( )
A.内所有直线与异面
B.内只存在有限条直线与共面
C.内存在唯一的直线与平行
D.内存在无数条直线与相交
7.函数的定义域为( )
A.[,3)∪(3,+∞) B.(-∞,3)∪(3,+∞)
C.[,+∞) D.(3,+∞)
8.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”.如图就是一重卦.在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是( )
A. B. C. D.
9.执行程序框图,则输出的数值为( )
A. B. C. D.
10.在空间直角坐标系中,四面体各顶点坐标分别为:.假设蚂蚁窝在点,一只蚂蚁从点出发,需要在,上分别任意选择一点留下信息,然后再返回点.那么完成这个工作所需要走的最短路径长度是( )
A. B. C. D.
11.如图,在棱长为4的正方体中,E,F,G分别为棱 AB,BC,的中点,M为棱AD的中点,设P,Q为底面ABCD内的两个动点,满足平面EFG,,则的最小值为( )
A. B. C. D.
12.已知m为实数,直线:,:,则“”是“”的( )
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
二、填空题:本题共4小题,每小题5分,共20分。
13.在中,内角A,B,C的对边分别是a,b,c,且,,,则_______.
14.展开式中项的系数是__________
15.已知函数,若对于任意正实数,均存在以为三边边长的三角形,则实数k的取值范围是_______.
16.已知圆C:经过抛物线E:的焦点,则抛物线E的准线与圆C相交所得弦长是__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)的内角,,的对边分别为,,已知,.
(1)求;
(2)若的面积,求.
18.(12分)已知数列的通项,数列为等比数列,且,,成等差数列.
(1)求数列的通项;
(2)设,求数列的前项和.
19.(12分)在平面直角坐标系xOy中,曲线的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点M对应的参数,射线与曲线交于点.
(1)求曲线,的直角坐标方程;
(2)若点A,B为曲线上的两个点且,求的值.
20.(12分)2019年6月,国内的运营牌照开始发放.从到,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对的消费意愿,2019年8月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:
用户分类
预计升级到的时段
人数
早期体验用户
2019年8月至2019年12月
270人
中期跟随用户
2020年1月至2021年12月
530人
后期用户
2023年1月及以后
200人
我们将大学生升级时间的早晚与大学生愿意为套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为套餐多支付5元的人数占所有早期体验用户的).
(1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到的概率;
(2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以表示这2人中愿意为升级多支付10元或10元以上的人数,求的分布列和数学期望;
(3)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约套餐,能否认为样本中早期体验用户的人数有变化?说明理由.
21.(12分)某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.
维修次数
2
3
4
5
6
甲设备
5
10
30
5
0
乙设备
0
5
15
15
15
(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为和,求和的分布列;
(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.
22.(10分)在平面直角坐标系中,已知椭圆的短轴长为,直线与椭圆相交于两点,线段的中点为.当与连线的斜率为时,直线的倾斜角为
(1)求椭圆的标准方程;
(2)若是以为直径的圆上的任意一点,求证:
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
由平均数、方差公式和极差、中位数概念,可得所求结论.
【题目详解】
对于甲,;
对于乙,,
故正确;
甲的极差为,乙的极差为,故错误;
对于甲,方差.5,
对于乙,方差,故正确;
甲得分的中位数为,乙得分的中位数为,故正确.
故选:.
【答案点睛】
本题考查茎叶图的应用,考查平均数和方差等概念,培养计算能力,意在考查学生对这些知识的理解掌握水平,属于基础题.
2、D
【答案解析】
“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.
【题目详解】
由题意知:可化简为,,
所以中变量取值的集合是中变量取值集合的真子集,所以.
【答案点睛】
利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.
3、C
【答案解析】
①与点距离为的点形成以为圆心,半径为的圆弧,利用弧长公式,可得结论;②当在(或时,与面所成角(或的正切值为最小,当在时,与面所成角的正切值为最大,可得正切值取值范围是;③设,,,则,即,可得在前后、左右、上下面上的正投影长,即可求出六个面上的正投影长度之和.
【题目详解】
如图:
①错误, 因为 ,与点距离为的点形成以为圆心,半径为的圆弧,长度为;
②正确,因为面面,所以点必须在面对角线上运动,当在(或)时,与面所成角(或)的正切值为最小(为下底面面对角线的交点),当在时,与面所成角的正切值为最大,所以正切值取值范围是;
③正确,设,则,即,在前后、左右、上下面上的正投影长分别为,,,所以六个面上的正投影长度之,当且仅当在时取等号.
故选:.
【答案点睛】
本题以命题的真假判断为载体,考查了轨迹问题、线面角、正投影等知识点,综合性强,属于难题.
4、A
【答案解析】
根据题意依次计算得到答案.
【题目详解】
根据题意知:,,故,,.
故选:.
【答案点睛】
本题考查了数列值的计算,意在考查学生的计算能力.
5、D
【答案解析】
根据集合的基本运算即可求解.
【题目详解】
解:,,,
则
故选:D.
【答案点睛】
本题主要考查集合的基本运算,属于基础题.
6、D
【答案解析】
通过条件判断直线与平面相交,于是可以判断ABCD的正误.
【题目详解】
根据直线不平行于平面,且可知直线与平面相交,于是ABC错误,故选D.
【答案点睛】
本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.
7、A
【答案解析】
根据幂函数的定义域与分母不为零列不等式组求解即可.
【题目详解】
因为函数,
解得且;
函数的定义域为, 故选A.
【答案点睛】
定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数的定义域为,则函数的定义域由不等式求出.
8、C
【答案解析】
利用组合的方法求所求的事件的对立事件,即该重卦没有阳爻或只有1个阳爻的概率,再根据两对立事件的概率和为1求解即可.
【题目详解】
设“该重卦至少有2个阳爻”为事件.所有“重卦”共有种;“该重卦至少有2个阳爻”的对立事件是“该重卦没有阳爻或只有1个阳爻”,其中,没有阳爻(即6个全部是阴爻)的情况有1种,只有1个阳爻的情况有种,故,所以该重卦至少有2个阳爻的概率是.
故选:C
【答案点睛】
本题主要考查了对立事件概率和为1的方法求解事件概率的方法.属于基础题.
9、C
【答案解析】
由题知:该程序框图是利用循环结构计算并输出变量的值,计算程序框图的运行结果即可得到答案.
【题目详解】
,,,,,满足条件,
,,,,满足条件,
,,,,满足条件,
,,,,满足条件,
,,,,不满足条件,
输出.
故选:C
【答案点睛】
本题主要考查程序框图中的循环结构,属于简单题.
10、C
【答案解析】
将四面体沿着劈开,展开后最短路径就是的边,在中,利用余弦定理即可求解.
【题目详解】
将四面体沿着劈开,展开后如下图所示:
最短路径就是的边.
易求得,
由,知
,
由余弦定理知
其中,
∴
故选:C
【答案点睛】
本题考查了余弦定理解三角形,需熟记定理的内容,考查了学生的空间想象能力,属于中档题.
11、C
【答案解析】
把截面画完整,可得在上,由知在以为圆心1为半径的四分之一圆上,利用对称性可得的最小值.
【题目详解】
如图,分别取的中点,连接,易证共面,即平面为截面,连接,由中位线定理可得,平面,平面,则平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.
正方体中平面,从而有,∴,∴在以为圆心1为半径的四分之一圆(圆在正方形内的部分)上,
显然关于直线的对称点为,
,当且仅当共线时取等号,∴所求最小值为.
故选:C.
【答案点睛】
本题考查空间距离的最小值问题,解题时作出正方体的完整截面求出点轨迹是第一个难点,第二个难点是求出点轨迹,第三个难点是利用对称性及圆的性质求得最小值.
12、A
【答案解析】
根据直线平行的等价条件,求出m的值,结合充分条件和必要条件的定义进行判断即可.
【题目详解】
当m=1时,两直线方程分别为直线l1:x+y﹣1=0,