温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
上海市
高中
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z满足i•z=2+i,则z的共轭复数是()
A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i
2.是平面上的一定点,是平面上不共线的三点,动点满足 ,,则动点的轨迹一定经过的( )
A.重心 B.垂心 C.外心 D.内心
3.已知全集,函数的定义域为,集合,则下列结论正确的是
A. B.
C. D.
4.已知函数有两个不同的极值点,,若不等式有解,则的取值范围是( )
A. B.
C. D.
5.已知实数,满足,则的最大值等于( )
A.2 B. C.4 D.8
6.函数在上为增函数,则的值可以是( )
A.0 B. C. D.
7.是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是( )
A. B. C. D.
8.设全集,集合,,则( )
A. B. C. D.
9.一只蚂蚁在边长为的正三角形区域内随机爬行,则在离三个顶点距离都大于的区域内的概率为( )
A. B. C. D.
10.在正项等比数列{an}中,a5-a1=15,a4-a2 =6,则a3=( )
A.2 B.4 C. D.8
11.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是( )
A. B.
C. D.
12.如图,在中,点,分别为,的中点,若,,且满足,则等于( )
A.2 B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知实数,满足,则目标函数的最小值为__________.
14.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,则取出球的编号互不相同的概率为_______________.
15.若的展开式中各项系数之和为32,则展开式中x的系数为_____
16.已知双曲线的一条渐近线经过点,则该双曲线的离心率为_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知点,且,满足条件的点的轨迹为曲线.
(1)求曲线的方程;
(2)是否存在过点的直线,直线与曲线相交于两点,直线与轴分别交于两点,使得?若存在,求出直线的方程;若不存在,请说明理由.
18.(12分)在平面直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系,已知曲线:,直线的参数方程为(为参数).直线与曲线交于,两点.
(I)写出曲线的直角坐标方程和直线的普通方程(不要求具体过程);
(II)设,若,,成等比数列,求的值.
19.(12分)已知等腰梯形中(如图1),,,为线段的中点,、为线段上的点,,现将四边形沿折起(如图2)
(1)求证:平面;
(2)在图2中,若,求直线与平面所成角的正弦值.
20.(12分)已知函数,函数,其中,是的一个极值点,且.
(1)讨论的单调性
(2)求实数和a的值
(3)证明
21.(12分)已知,函数,(是自然对数的底数).
(Ⅰ)讨论函数极值点的个数;
(Ⅱ)若,且命题“,”是假命题,求实数的取值范围.
22.(10分)设抛物线的焦点为,准线为,为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点.
(1)求的值及该圆的方程;
(2)设为上任意一点,过点作的切线,切点为,证明:.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
两边同乘-i,化简即可得出答案.
【题目详解】
i•z=2+i两边同乘-i得z=1-2i,共轭复数为1+2i,选D.
【答案点睛】
的共轭复数为
2、B
【答案解析】
解出,计算并化简可得出结论.
【题目详解】
λ(),
∴,
∴,即点P在BC边的高上,即点P的轨迹经过△ABC的垂心.
故选B.
【答案点睛】
本题考查了平面向量的数量积运算在几何中的应用,根据条件中的角计算是关键.
3、A
【答案解析】
求函数定义域得集合M,N后,再判断.
【题目详解】
由题意,,∴.
故选A.
【答案点睛】
本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.
4、C
【答案解析】
先求导得(),由于函数有两个不同的极值点,,转化为方程有两个不相等的正实数根,根据,,,求出的取值范围,而有解,通过分裂参数法和构造新函数,通过利用导数研究单调性、最值,即可得出的取值范围.
【题目详解】
由题可得:(),
因为函数有两个不同的极值点,,
所以方程有两个不相等的正实数根,
于是有解得.
若不等式有解,
所以
因为
.
设,
,故在上单调递增,
故,
所以,
所以的取值范围是.
故选:C.
【答案点睛】
本题考查利用导数研究函数单调性、最值来求参数取值范围,以及运用分离参数法和构造函数法,还考查分析和计算能力,有一定的难度.
5、D
【答案解析】
画出可行域,计算出原点到可行域上的点的最大距离,由此求得的最大值.
【题目详解】
画出可行域如下图所示,其中,由于,,所以,
所以原点到可行域上的点的最大距离为.
所以的最大值为.
故选:D
【答案点睛】
本小题主要考查根据可行域求非线性目标函数的最值,考查数形结合的数学思想方法,属于基础题.
6、D
【答案解析】
依次将选项中的代入,结合正弦、余弦函数的图象即可得到答案.
【题目详解】
当时,在上不单调,故A不正确;
当时,在上单调递减,故B不正确;
当时,在上不单调,故C不正确;
当时,在上单调递增,故D正确.
故选:D
【答案点睛】
本题考查正弦、余弦函数的单调性,涉及到诱导公式的应用,是一道容易题.
7、C
【答案解析】
求出点关于直线的对称点的坐标,进而可得出圆关于直线的对称圆的方程,利用二次函数的基本性质求出的最小值,由此可得出,即可得解.
【题目详解】
如下图所示:
设点关于直线的对称点为点,
则,整理得,解得,即点,
所以,圆关于直线的对称圆的方程为,
设点,则,
当时,取最小值,因此,.
故选:C.
【答案点睛】
本题考查抛物线上一点到圆上一点最值的计算,同时也考查了两圆关于直线对称性的应用,考查计算能力,属于中等题.
8、D
【答案解析】
求解不等式,得到集合A,B,利用交集、补集运算即得解
【题目详解】
由于
故集合
或
故集合
故选:D
【答案点睛】
本题考查了集合的交集和补集混合运算,考查了学生概念理解,数学运算的能力,属于中档题.
9、A
【答案解析】
求出满足条件的正的面积,再求出满足条件的正内的点到顶点、、的距离均不小于的图形的面积,然后代入几何概型的概率公式即可得到答案.
【题目详解】
满足条件的正如下图所示:
其中正的面积为,
满足到正的顶点、、的距离均不小于的图形平面区域如图中阴影部分所示,
阴影部分区域的面积为.
则使取到的点到三个顶点、、的距离都大于的概率是.
故选:A.
【答案点睛】
本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式的应用,考查计算能力,属于中等题.
10、B
【答案解析】
根据题意得到,,解得答案.
【题目详解】
,,解得或(舍去).
故.
故选:.
【答案点睛】
本题考查了等比数列的计算,意在考查学生的计算能力.
11、D
【答案解析】
利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项.
【题目详解】
因为,,
故.
又,故.
因为当时,函数是单调递减函数,
所以.
因为为偶函数,故,
所以.
故选:D.
【答案点睛】
本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.
12、D
【答案解析】
选取为基底,其他向量都用基底表示后进行运算.
【题目详解】
由题意是的重心,
,
∴,,
∴,
故选:D.
【答案点睛】
本题考查向量的数量积,解题关键是选取两个不共线向量作为基底,其他向量都用基底表示参与运算,这样做目标明确,易于操作.
二、填空题:本题共4小题,每小题5分,共20分。
13、-1
【答案解析】
作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
【题目详解】
作出实数x,y满足对应的平面区域如图阴影所示;
由z=x+2y﹣1,得yx,
平移直线yx,由图象可知当直线yx经过点A时,
直线yx的纵截距最小,此时z最小.
由,得A(﹣1,﹣1),
此时z的最小值为z=﹣1﹣2﹣1=﹣1,
故答案为﹣1.
【答案点睛】
本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,是基础题
14、
【答案解析】
试题分析:从编号分别为1,1,3,4,5的5个红球和5个黑球,从中随机取出4个,有种不同的结果,由于是随机取出的,所以每个结果出现的可能性是相等的;设事件为“取出球的编号互不相同”,
则事件包含了个基本事件,所以.
考点:1.计数原理;1.古典概型.
15、2025
【答案解析】
利用赋值法,结合展开式中各项系数之和列方程,由此求得的值.再利用二项式展开式的通项公式,求得展开式中的系数.
【题目详解】
依题意,令,解得,所以,则二项式的展开式的通项为:
令,得,所以的系数为.
故答案为:2025
【答案点睛】
本小题主要考查二项式展开式各项系数之和,考查二项式展开式指定项系数的求法,属于基础题.
16、
【答案解析】
根据双曲线方程,可得渐近线方程,结合题意可表示,再由双曲线a,b,c关系表示,最后结合双曲线离心率公式计算得答案.
【题目详解】
因为双曲线为,所以该双曲线的渐近线方程为.
又因为其一条渐近线经过点,即,则,
由此可得.
故答案为:.
【答案点睛】
本题考查由双曲线的渐近线构建方程表示系数关系进而求离心率,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)(2)存在, 或.
【答案解析】
(1)由得看成到两定点的和为定值,满足椭圆定义,用定义可解曲线的方程.
(2)先讨论斜率不存在情况是否符合题意,当直线的斜率存在时,设直线点斜式方程,由,可得,再直线与椭圆联解,利用根的判别式得到关于的一元二次方程求解.
【题目详解】
解:设,
由, ,
可得,即为,
由,可得的轨迹是以为焦点,且的椭圆,
由,可得,可得曲线的方程为;
假设存在过点的直线l符合题意.
当直线的斜率不存在,设方程为,可得为短轴的两个端点,
不成立;
当直线的斜率存在时,设方程为,
由,可得,即,
可得,化为,
由可得,
由在椭圆内,可得直线与椭圆相交,
,
则