温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
湖南省
邵阳市
第十一
中学
高考
数学
倒计时
模拟
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,则( )
A.2 B. C. D.3
2.已知双曲线的左焦点为,直线经过点且与双曲线的一条渐近线垂直,直线与双曲线的左支交于不同的两点,,若,则该双曲线的离心率为( ).
A. B. C. D.
3.在条件下,目标函数的最大值为40,则的最小值是( )
A. B. C. D.2
4.定义运算,则函数的图象是( ).
A. B.
C. D.
5.已知复数满足,则的值为( )
A. B. C. D.2
6.已知为圆:上任意一点,,若线段的垂直平分线交直线于点,则点的轨迹方程为( )
A. B.
C.() D.()
7.如图,中,点D在BC上,,将沿AD旋转得到三棱锥,分别记,与平面ADC所成角为,,则,的大小关系是( )
A. B.
C.,两种情况都存在 D.存在某一位置使得
8.已知实数,,函数在上单调递增,则实数的取值范围是( )
A. B. C. D.
9.已知向量,,当时,( )
A. B. C. D.
10.已知双曲线,点是直线上任意一点,若圆与双曲线的右支没有公共点,则双曲线的离心率取值范围是( ).
A. B. C. D.
11.要得到函数的图象,只需将函数的图象( )
A.向右平移个单位 B.向右平移个单位
C.向左平移个单位 D.向左平移个单位
12.若函数(其中,图象的一个对称中心为,,其相邻一条对称轴方程为,该对称轴处所对应的函数值为,为了得到的图象,则只要将的图象( )
A.向右平移个单位长度 B.向左平移个单位长度
C.向左平移个单位长度 D.向右平移个单位长度
二、填空题:本题共4小题,每小题5分,共20分。
13.已知抛物线的焦点为,斜率为2的直线与的交点为,若,则直线的方程为___________.
14.平面向量与的夹角为,,,则__________.
15.在棱长为6的正方体中,是的中点,点是面,所在平面内的动点,且满足,则三棱锥的体积的最大值是__________.
16.学校艺术节对同一类的,,,四件参赛作品,只评一件一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“或作品获得一等奖”; 乙说:“作品获得一等奖”;
丙说:“,两项作品未获得一等奖”; 丁说:“作品获得一等奖”.
若这四位同学中有且只有两位说的话是对的,则获得一等奖的作品是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).
(1)请用角表示清洁棒的长;
(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.
18.(12分)已知函数
(I)若讨论的单调性;
(Ⅱ)若,且对于函数的图象上两点,存在,使得函数的图象在处的切线.求证:.
19.(12分)已知函数(其中是自然对数的底数)
(1)若在R上单调递增,求正数a的取值范围;
(2)若f(x)在处导数相等,证明:;
(3)当时,证明:对于任意,若,则直线与曲线有唯一公共点(注:当时,直线与曲线的交点在y轴两侧).
20.(12分)古人云:“腹有诗书气自华.”为响应全民阅读,建设书香中国,校园读书活动的热潮正在兴起.某校为统计学生一周课外读书的时间,从全校学生中随机抽取名学生进行问卷调査,统计了他们一周课外读书时间(单位:)的数据如下:
一周课外读书时间/
合计
频数
4
6
10
12
14
24
46
34
频率
0.02
0.03
0.05
0.06
0.07
0.12
0.25
0.17
1
(1)根据表格中提供的数据,求,,的值并估算一周课外读书时间的中位数.
(2)如果读书时间按,,分组,用分层抽样的方法从名学生中抽取20人.
①求每层应抽取的人数;
②若从,中抽出的学生中再随机选取2人,求这2人不在同一层的概率.
21.(12分)等差数列的前项和为,已知,.
(1)求数列的通项公式;
(2)设数列{}的前项和为,求使成立的的最小值.
22.(10分)已知数列和满足:.
(1)求证:数列为等比数列;
(2)求数列的前项和.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
利用分段函数的性质逐步求解即可得答案.
【题目详解】
,;
;
故选:.
【答案点睛】
本题考查了函数值的求法,考查对数的运算和对数函数的性质,是基础题,解题时注意函数性质的合理应用.
2、A
【答案解析】
直线的方程为,令和双曲线方程联立,再由得到两交点坐标纵坐标关系进行求解即可.
【题目详解】
由题意可知直线的方程为,不妨设.
则,且
将代入双曲线方程中,得到
设
则
由,可得,故
则,解得
则
所以双曲线离心率
故选:A
【答案点睛】
此题考查双曲线和直线相交问题,联立直线和双曲线方程得到两交点坐标关系和已知条件即可求解,属于一般性题目.
3、B
【答案解析】
画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案.
【题目详解】
如图所示,画出可行域和目标函数,根据图像知:
当时,有最大值为,即,故.
.
当,即时等号成立.
故选:.
【答案点睛】
本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.
4、A
【答案解析】
由已知新运算的意义就是取得中的最小值,
因此函数,
只有选项中的图象符合要求,故选A.
5、C
【答案解析】
由复数的除法运算整理已知求得复数z,进而求得其模.
【题目详解】
因为,所以
故选:C
【答案点睛】
本题考查复数的除法运算与求复数的模,属于基础题.
6、B
【答案解析】
如图所示:连接,根据垂直平分线知,,故轨迹为双曲线,计算得到答案.
【题目详解】
如图所示:连接,根据垂直平分线知,
故,故轨迹为双曲线,
,,,故,故轨迹方程为.
故选:.
【答案点睛】
本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.
7、A
【答案解析】
根据题意作出垂线段,表示出所要求得、角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案.
【题目详解】
由题可得过点作交于点,过作的垂线,垂足为,则易得,.
设,则有,,,
可得,.
,
,;
,;
,
,,
.
综上可得,.
故选:.
【答案点睛】
本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平.
8、D
【答案解析】
根据题意,对于函数分2段分析:当,由指数函数的性质分析可得①,当,由导数与函数单调性的关系可得,在上恒成立,变形可得②,再结合函数的单调性,分析可得③,联立三个式子,分析可得答案.
【题目详解】
解:根据题意,函数在上单调递增,
当,若为增函数,则①,
当,
若为增函数,必有在上恒成立,
变形可得:,
又由,可得在上单调递减,则,
若在上恒成立,则有②,
若函数在上单调递增,左边一段函数的最大值不能大于右边一段函数的最小值,
则需有,③
联立①②③可得:.
故选:D.
【答案点睛】
本题考查函数单调性的性质以及应用,注意分段函数单调性的性质.
9、A
【答案解析】
根据向量的坐标运算,求出,,即可求解.
【题目详解】
,
.
故选:A.
【答案点睛】
本题考查向量的坐标运算、诱导公式、二倍角公式、同角间的三角函数关系,属于中档题.
10、B
【答案解析】
先求出双曲线的渐近线方程,可得则直线与直线的距离,根据圆与双曲线的右支没有公共点,可得,解得即可.
【题目详解】
由题意,双曲线的一条渐近线方程为,即,
∵是直线上任意一点,
则直线与直线的距离,
∵圆与双曲线的右支没有公共点,则,
∴,即,又
故的取值范围为,
故选:B.
【答案点睛】
本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线的右支没有公共点得出是解答的关键,着重考查了推理与运算能力,属于基础题.
11、D
【答案解析】
直接根据三角函数的图象平移规则得出正确的结论即可;
【题目详解】
解:函数,
要得到函数的图象,
只需将函数的图象向左平移个单位.
故选:D.
【答案点睛】
本题考查三角函数图象平移的应用问题,属于基础题.
12、B
【答案解析】
由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,可得的解析式,再根据函数的图象变换规律,诱导公式,得出结论.
【题目详解】
根据已知函数
其中,的图象过点,,
可得,,
解得:.
再根据五点法作图可得,
可得:,
可得函数解析式为:
故把的图象向左平移个单位长度,
可得的图象,
故选B.
【答案点睛】
本题主要考查由函数的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,函数的图象变换规律,诱导公式的应用,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
设直线l的方程为,,联立直线l与抛物线C的方程,得到A,B点横坐标的关系式,代入到中,解出t的值,即可求得直线l的方程
【题目详解】
设直线.
由题设得,故,
由题设可得.
由可得,
则,
从而,得,
所以l的方程为,
故答案为:
【答案点睛】
本题主要考查了直线的方程,抛物线的定义,抛物线的简单几何性质,直线与抛物线的位置关系,属于中档题.
14、
【答案解析】
由平面向量模的计算公式,直接计算即可.
【题目详解】
因为平面向量与的夹角为,所以,
所以;
故答案为
【答案点睛】
本题主要考查平面向量模的计算,只需先求出向量的数量积,进而即可求出结果,属于基础题型.
15、
【答案解析】
根据与相似,,过作于,利用体积公式求解OP最值,根据勾股定理得出,,利用函数单调性判断求解即可.
【题目详解】
∵在棱长为6的正方体中,
是的中点,点是面所在平面内的动点,
且满足,又,
∴与相似
∴,即,
过作于,设,,
∴,化简得:
,,
根据函数单调性判断,时,取得最大值36,,
在正方体中平面.
三棱锥体积的最大值为
【答案点睛】
本题考查三角形相似,几何体体积以及函数单调性的综合应用,难度一般.
16、B
【答案解析】
首先根据“学校艺术节对四件参赛作品只评一件一等奖”,故假设分别为一等奖,然后判断甲、乙、丙、丁四位同学的说法的正确性,即可得出结果.
【题目详解】
若A为一等奖,则甲、丙、丁的说法均错误,不满足题意;
若B为一等奖,则乙、丙的说法正确,甲、丁的说法错