温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
黑龙江省
安达市
育才
高中
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.抛物线的焦点是双曲线的右焦点,点是曲线的交点,点在抛物线的准线上,是以点为直角顶点的等腰直角三角形,则双曲线的离心率为( )
A. B. C. D.
2.已知,则“m⊥n”是“m⊥l”的
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
3.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为( )
A. B. C.或- D.和-
4.一个陶瓷圆盘的半径为,中间有一个边长为的正方形花纹,向盘中投入1000粒米后,发现落在正方形花纹上的米共有51粒,据此估计圆周率的值为(精确到0.001)( )
A.3.132 B.3.137 C.3.142 D.3.147
5. 下列与的终边相同的角的表达式中正确的是( )
A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)
C.k·360°-315°(k∈Z) D.kπ+ (k∈Z)
6.数列满足:,则数列前项的和为
A. B. C. D.
7.已知,满足条件(为常数),若目标函数的最大值为9,则( )
A. B. C. D.
8.已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为( ).
A. B. C. D.
9.已知点(m,8)在幂函数的图象上,设,则( )
A.b<a<c B.a<b<c C.b<c<a D.a<c<b
10.已知函数满足:当时,,且对任意,都有,则( )
A.0 B.1 C.-1 D.
11.设点,,不共线,则“”是“”( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分又不必要条件
12.台球是一项国际上广泛流行的高雅室内体育运动,也叫桌球(中国粤港澳地区的叫法)、撞球(中国台湾地区的叫法)控制撞球点、球的旋转等控制母球走位是击球的一项重要技术,一次台球技术表演节目中,在台球桌上,画出如图正方形ABCD,在点E,F处各放一个目标球,表演者先将母球放在点A处,通过击打母球,使其依次撞击点E,F处的目标球,最后停在点C处,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,则该正方形的边长为( )
A.50cm B.40cm C.50cm D.20cm
二、填空题:本题共4小题,每小题5分,共20分。
13.若x,y满足,则的最小值为________.
14.设O为坐标原点, ,若点B(x,y)满足,则的最大值是__________.
15.已知向量,,满足,,,则的取值范围为_________.
16.如图,在矩形中,为边的中点,,,分别以、为圆心,为半径作圆弧、(在线段上).由两圆弧、及边所围成的平面图形绕直线旋转一周,则所形成的几何体的体积为 .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)等差数列中,.
(1)求的通项公式;
(2)设,记为数列前项的和,若,求.
18.(12分)已知函数
(1)若对任意恒成立,求实数的取值范围;
(2)求证:
19.(12分)已知曲线的参数方程为为参数, 曲线的参数方程为为参数).
(1)求与的普通方程;
(2)若与相交于,两点,且,求的值.
20.(12分)如图1,在边长为4的正方形中,是的中点,是的中点,现将三角形沿翻折成如图2所示的五棱锥.
(1)求证:平面;
(2)若平面平面,求直线与平面所成角的正弦值.
21.(12分)已知,,,.
(1)求的值;
(2)求的值.
22.(10分)在极坐标系中,曲线的极坐标方程为,直线的极坐标方程为,设与交于、两点,中点为,的垂直平分线交于、.以为坐标原点,极轴为轴的正半轴建立直角坐标系.
(1)求的直角坐标方程与点的直角坐标;
(2)求证:.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
先由题和抛物线的性质求得点P的坐标和双曲线的半焦距c的值,再利用双曲线的定义可求得a的值,即可求得离心率.
【题目详解】
由题意知,抛物线焦点,准线与x轴交点,双曲线半焦距,设点 是以点为直角顶点的等腰直角三角形,即,结合点在抛物线上,
所以抛物线的准线,从而轴,所以,
即
故双曲线的离心率为
故选A
【答案点睛】
本题考查了圆锥曲线综合,分析题目,画出图像,熟悉抛物线性质以及双曲线的定义是解题的关键,属于中档题.
2、B
【答案解析】
构造长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,然后再在这两个面中根据题意恰当的选取直线为m,n即可进行判断.
【题目详解】
如图,取长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,直线=直线。
若令AD1=m,AB=n,则m⊥n,但m不垂直于
若m⊥,由平面平面可知,直线m垂直于平面β,所以m垂直于平面β内的任意一条直线
∴m⊥n是m⊥的必要不充分条件.
故选:B.
【答案点睛】
本题考点有两个:①考查了充分必要条件的判断,在确定好大前提的条件下,从m⊥n⇒m⊥?和m⊥⇒m⊥n?两方面进行判断;②是空间的垂直关系,一般利用长方体为载体进行分析.
3、C
【答案解析】
直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),可以发现∠QOx的大小,求得结果.
【题目详解】
如图,直线过定点(0,1),
∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°,
∴由对称性可知k=±.
故选C.
【答案点睛】
本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题.
4、B
【答案解析】
结合随机模拟概念和几何概型公式计算即可
【题目详解】
如图,由几何概型公式可知:.
故选:B
【答案点睛】
本题考查随机模拟的概念和几何概型,属于基础题
5、C
【答案解析】
利用终边相同的角的公式判断即得正确答案.
【题目详解】
与的终边相同的角可以写成2kπ+ (k∈Z),但是角度制与弧度制不能混用,所以只有答案C正确.
故答案为C
【答案点睛】
(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2) 与终边相同的角=+ 其中.
6、A
【答案解析】
分析:通过对an﹣an+1=2anan+1变形可知,进而可知,利用裂项相消法求和即可.
详解:∵,∴,
又∵=5,
∴,即,
∴,
∴数列前项的和为,
故选A.
点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2) ; (3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
7、B
【答案解析】
由目标函数的最大值为9,我们可以画出满足条件 件为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数的方程组,消参后即可得到的取值.
【题目详解】
画出,满足的为常数)可行域如下图:
由于目标函数的最大值为9,
可得直线与直线的交点,
使目标函数取得最大值,
将,代入得:.
故选:.
【答案点睛】
如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组,代入另一条直线方程,消去,后,即可求出参数的值.
8、D
【答案解析】
因为的展开式中第4项与第8项的二项式系数相等,所以,解得,
所以二项式中奇数项的二项式系数和为.
考点:二项式系数,二项式系数和.
9、B
【答案解析】
先利用幂函数的定义求出m的值,得到幂函数解析式为f(x)=x3,在R上单调递增,再利用幂函数f(x)的单调性,即可得到a,b,c的大小关系.
【题目详解】
由幂函数的定义可知,m﹣1=1,∴m=2,
∴点(2,8)在幂函数f(x)=xn上,
∴2n=8,∴n=3,
∴幂函数解析式为f(x)=x3,在R上单调递增,
∵,1<lnπ<3,n=3,
∴,
∴a<b<c,
故选:B.
【答案点睛】
本题主要考查了幂函数的性质,以及利用函数的单调性比较函数值大小,属于中档题.
10、C
【答案解析】
由题意可知,代入函数表达式即可得解.
【题目详解】
由可知函数是周期为4的函数,
.
故选:C.
【答案点睛】
本题考查了分段函数和函数周期的应用,属于基础题.
11、C
【答案解析】
利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.
【题目详解】
由于点,,不共线,则“”;
故“”是“”的充分必要条件.
故选:C.
【答案点睛】
本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.
12、D
【答案解析】
过点做正方形边的垂线,如图,设,利用直线三角形中的边角关系,将用表示出来,根据,列方程求出,进而可得正方形的边长.
【题目详解】
过点做正方形边的垂线,如图,
设,则,,
则
,
因为,则,
整理化简得,又,
得 ,
.
即该正方形的边长为.
故选:D.
【答案点睛】
本题考查直角三角形中的边角关系,关键是要构造直角三角形,是中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、5
【答案解析】
先作出可行域,再做直线,平移,找到使直线在y轴上截距最小的点,代入即得。
【题目详解】
作出不等式组表示的平面区域,如图,令,则,作出直线,平移直线,由图可得,当直线经过C点时,直线在y轴上的截距最小,由,可得,因此的最小值为.
故答案为:4
【答案点睛】
本题考查不含参数的线性规划问题,是基础题。
14、
【答案解析】
,可行域如图,直线 与圆 相切时取最大值,由
15、
【答案解析】
设,,,,由,,,根据平面向量模的几何意义,可得A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,为的距离,利用数形结合求解.
【题目详解】
设,,,,
如图所示:
因为,,,
所以A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,
则即的距离,
由图可知,.
故答案为:
【答案点睛】
本题主要考查平面向量的模及运算的几何意义,还考查了数形结合的方法,属于中档题.
16、
【答案解析】
由题意,可得所得到的几何体是由一个圆柱挖去两个半球而成;其中,圆柱的底面半