温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
河北省
张家口市
宣化
一中
第二次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,,,,,,,则图中空白框中应填入( )
A., B. C., D.,
2.如图,在圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,异面直线SC与OE所成角的正切值为( )
A. B. C. D.
3.已知若(1-ai )( 3+2i )为纯虚数,则a的值为 ( )
A. B. C. D.
4.已知定义在上的函数在区间上单调递增,且的图象关于对称,若实数满足,则的取值范围是( )
A. B. C. D.
5.若集合,则( )
A. B.
C. D.
6.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为( )
A. B. C. D.
7.设i为数单位,为z的共轭复数,若,则( )
A. B. C. D.
8.已知盒中有3个红球,3个黄球,3个白球,且每种颜色的三个球均按,,编号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母,,的概率为( )
A. B. C. D.
9.已知函数,则下列判断错误的是( )
A.的最小正周期为 B.的值域为
C.的图象关于直线对称 D.的图象关于点对称
10.已知复数满足,其中为虚数单位,则( ).
A. B. C. D.
11.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有( )
A.120种 B.240种 C.480种 D.600种
12.已知棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知均为非负实数,且,则的取值范围为______.
14.已知非零向量,满足,且,则与的夹角为____________.
15.某次足球比赛中,,,,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.已知他们之间相互获胜的概率如下表所示.
获胜概率
—
0.4
0.3
0.8
获胜概率
0.6
—
0.7
0.5
获胜概率
0.7
0.3
—
0.3
获胜概率
0.2
0.5
0.7
—
则队获得冠军的概率为______.
16.已知等比数列的前项和为,,且,则__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知曲线的参数方程为为参数, 曲线的参数方程为为参数).
(1)求与的普通方程;
(2)若与相交于,两点,且,求的值.
18.(12分)为了实现中华民族伟大复兴之梦,把我国建设成为富强民主文明和谐美丽的社会主义现代化强国,党和国家为劳动者开拓了宽广的创造性劳动的舞台.借此“东风”,某大型现代化农场在种植某种大棚有机无公害的蔬菜时,为创造更大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间和降低夜间温度两种不同方案.为比较两种方案下产量的区别,该农场选取了40间大棚(每间一亩),分成两组,每组20间进行试点.第一组采用延长光照时间的方案,第二组采用降低夜间温度的方案.同时种植该蔬菜一季,得到各间大棚产量数据信息如下图:
(1)如果你是该农场的负责人,在只考虑亩产量的情况下,请根据图中的数据信息,对于下一季大棚蔬菜的种植,说出你的决策方案并说明理由;
(2)已知种植该蔬菜每年固定的成本为6千元/亩.若采用延长光照时间的方案,光照设备每年的成本为0.22千元/亩;若采用夜间降温的方案,降温设备的每年成本为0.2千元/亩.已知该农场共有大棚100间(每间1亩),农场种植的该蔬菜每年产出两次,且该蔬菜市场的收购均价为1千元/千斤.根据题中所给数据,用样本估计总体,请计算在两种不同的方案下,种植该蔬菜一年的平均利润;
(3)农场根据以往该蔬菜的种植经验,认为一间大棚亩产量超过5.25千斤为增产明显.在进行夜间降温试点的20间大棚中随机抽取3间,记增产明显的大棚间数为,求的分布列及期望.
19.(12分)已知函数.
(1)若恒成立,求的取值范围;
(2)设函数的极值点为,当变化时,点构成曲线,证明:过原点的任意直线与曲线有且仅有一个公共点.
20.(12分)如图所示,四棱柱中,底面为梯形,,,,,,.
(1)求证:;
(2)若平面平面,求二面角的余弦值.
21.(12分)已知等差数列和等比数列满足:
(I)求数列和的通项公式;
(II)求数列的前项和.
22.(10分)已知函数,为实数,且.
(Ⅰ)当时,求的单调区间和极值;
(Ⅱ)求函数在区间,上的值域(其中为自然对数的底数).
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
依题意问题是,然后按直到型验证即可.
【题目详解】
根据题意为了计算7个数的方差,即输出的,
观察程序框图可知,应填入,,
故选:A.
【答案点睛】
本题考查算法与程序框图,考查推理论证能力以及转化与化归思想,属于基础题.
2、D
【答案解析】
可过点S作SF∥OE,交AB于点F,并连接CF,从而可得出∠CSF(或补角)为异面直线SC与OE所成的角,根据条件即可求出,这样即可得出tan∠CSF的值.
【题目详解】
如图,过点S作SF∥OE,交AB于点F,连接CF,
则∠CSF(或补角)即为异面直线SC与OE所成的角,
∵,∴,
又OB=3,∴,
SO⊥OC,SO=OC=3,∴;
SO⊥OF,SO=3,OF=1,∴;
OC⊥OF,OC=3,OF=1,∴,
∴等腰△SCF中,.
故选:D.
【答案点睛】
本题考查了异面直线所成角的定义及求法,直角三角形的边角的关系,平行线分线段成比例的定理,考查了计算能力,属于基础题.
3、A
【答案解析】
根据复数的乘法运算法则化简可得,根据纯虚数的概念可得结果.
【题目详解】
由题可知原式为,该复数为纯虚数,
所以.
故选:A
【答案点睛】
本题考查复数的运算和复数的分类,属基础题.
4、C
【答案解析】
根据题意,由函数的图象变换分析可得函数为偶函数,又由函数在区间上单调递增,分析可得,解可得的取值范围,即可得答案.
【题目详解】
将函数的图象向左平移个单位长度可得函数的图象,
由于函数的图象关于直线对称,则函数的图象关于轴对称,
即函数为偶函数,由,得,
函数在区间上单调递增,则,得,解得.
因此,实数的取值范围是.
故选:C.
【答案点睛】
本题考查利用函数的单调性与奇偶性解不等式,注意分析函数的奇偶性,属于中等题.
5、A
【答案解析】
先确定集合中的元素,然后由交集定义求解.
【题目详解】
,.
故选:A.
【答案点睛】
本题考查求集合的交集运算,掌握交集定义是解题关键.
6、B
【答案解析】
试题分析:由题意得,,所以,,所求双曲线方程为.
考点:双曲线方程.
7、A
【答案解析】
由复数的除法求出,然后计算.
【题目详解】
,
∴.
故选:A.
【答案点睛】
本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键.
8、B
【答案解析】
首先求出基本事件总数,则事件“恰好不同时包含字母,,”的对立事件为“取出的3个球的编号恰好为字母,,”, 记事件“恰好不同时包含字母,,”为,利用对立事件的概率公式计算可得;
【题目详解】
解:从9个球中摸出3个球,则基本事件总数为(个),
则事件“恰好不同时包含字母,,”的对立事件为“取出的3个球的编号恰好为字母,,”
记事件“恰好不同时包含字母,,”为,则.
故选:B
【答案点睛】
本题考查了古典概型及其概率计算公式,考查了排列组合的知识,解答的关键在于正确理解题意,属于基础题.
9、D
【答案解析】
先将函数化为,再由三角函数的性质,逐项判断,即可得出结果.
【题目详解】
可得
对于A,的最小正周期为,故A正确;
对于B,由,可得,故B正确;
对于C,正弦函数对称轴可得:
解得:,
当,,故C正确;
对于D,正弦函数对称中心的横坐标为:
解得:
若图象关于点对称,则
解得:,故D错误;
故选:D.
【答案点睛】
本题考查三角恒等变换,三角函数的性质,熟记三角函数基本公式和基本性质,考查了分析能力和计算能力,属于基础题.
10、A
【答案解析】
先化简求出,即可求得答案.
【题目详解】
因为,
所以
所以
故选:A
【答案点睛】
此题考查复数的基本运算,注意计算的准确度,属于简单题目.
11、B
【答案解析】
首先将五天进行分组,再对名著进行分配,根据分步乘法计数原理求得结果.
【题目详解】
将周一至周五分为组,每组至少天,共有:种分组方法;
将四大名著安排到组中,每组种名著,共有:种分配方法;
由分步乘法计数原理可得不同的阅读计划共有:种
本题正确选项:
【答案点睛】
本题考查排列组合中的分组分配问题,涉及到分步乘法计数原理的应用,易错点是忽略分组中涉及到的平均分组问题.
12、B
【答案解析】
由三视图可知,该三棱锥如图, 其中底面是等腰直角三角形,平面,结合三视图求出每个面的面积即可.
【题目详解】
由三视图可知,该三棱锥如图所示:
其中底面是等腰直角三角形,平面,
由三视图知,
因为,,
所以,
所以,
因为为等边三角形,
所以,
所以该三棱锥的四个面中,最大面积为.
故选:B
【答案点睛】
本题考查三视图还原几何体并求其面积; 考查空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
设,可得的取值范围,分别利用基本不等式和,把用代换,结合的取值范围求关于的二次函数的最值即可求解.
【题目详解】
因为,,令,则 ,
因为,当且仅当时等号成立,
所以 ,,
即,
令则函数的对称轴为,
所以当时函数有最大值为,
即.
当且,即,或,时取等号;
因为,当且仅当时等号成立,
所以,
令,则函数的对称轴为,
所以当时,函数有最小值为,
即,
当,且时取等号,
所以.
故答案为:
【答案点睛】
本题考查基本不等式与二次函数求最值相结合求代数式的取值范围;考查运算求解能力和知识的综合运用能力;基本不等式:和的灵活运用是求解本题的关键;属于综合型、难度大型试题.
14、(或写成)
【答案解析】
设与的夹角为,通过,可得,