温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
江西省
赣州市
宁都县
第三中学
下学
联考
数学试题
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设等差数列的前n项和为,且,,则( )
A.9 B.12 C. D.
2.已知表示两条不同的直线,表示两个不同的平面,且则“”是“”的( )条件.
A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要
3.《九章算术》是我国古代数学名著,书中有如下问题:“今有勾六步,股八步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为6步和8步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是( )
A. B. C. D.
4.已知函数的最小正周期为,为了得到函数的图象,只要将的图象( )
A.向左平移个单位长度 B.向右平移个单位长度
C.向左平移个单位长度 D.向右平移个单位长度
5.已知实数满足,则的最小值为( )
A. B. C. D.
6.设集合,,则集合
A. B. C. D.
7.计算等于( )
A. B. C. D.
8.过点的直线与曲线交于两点,若,则直线的斜率为( )
A. B.
C.或 D.或
9.已知复数,为的共轭复数,则( )
A. B. C. D.
10.在三角形中,,,求( )
A. B. C. D.
11.执行如图所示的程序框图,如果输入,则输出属于( )
A. B. C. D.
12. “完全数”是一些特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.古希腊数学家毕达哥拉斯公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28不在同一组的概率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知集合,,则__________.
14.现有一块边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,该方盒容积的最大值是________.
15.设,则“”是“”的__________条件.
16.数学家狄里克雷对数论,数学分析和数学物理有突出贡献,是解析数论的创始人之一.函数,称为狄里克雷函数.则关于有以下结论:
①的值域为;
②;
③;
④
其中正确的结论是_______(写出所有正确的结论的序号)
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知,函数.
(1)若函数在上为减函数,求实数的取值范围;
(2)求证:对上的任意两个实数,,总有成立.
18.(12分)已知椭圆的离心率为,直线过椭圆的右焦点,过的直线交椭圆于两点(均异于左、右顶点).
(1)求椭圆的方程;
(2)已知直线,为椭圆的右顶点. 若直线交于点,直线交于点,试判断是否为定值,若是,求出定值;若不是,说明理由.
19.(12分)已知曲线,直线:(为参数).
(I)写出曲线的参数方程,直线的普通方程;
(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值.
20.(12分)在四棱锥中,底面是边长为2的菱形,是的中点.
(1)证明:平面;
(2)设是直线上的动点,当点到平面距离最大时,求面与面所成二面角的正弦值.
21.(12分)已知椭圆的左,右焦点分别为,直线与椭圆相交于两点;当直线经过椭圆的下顶点和右焦点时,的周长为,且与椭圆的另一个交点的横坐标为
(1)求椭圆的方程;
(2)点为内一点,为坐标原点,满足,若点恰好在圆上,求实数的取值范围.
22.(10分)已知,(其中)
.
(1)求;
(2)求证:当时,.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
由,可得以及,而,代入即可得到答案.
【题目详解】
设公差为d,则解得
,所以.
故选:A.
【答案点睛】
本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.
2、B
【答案解析】
根据充分必要条件的概念进行判断.
【题目详解】
对于充分性:若,则可以平行,相交,异面,故充分性不成立;
若,则可得,必要性成立.
故选:B
【答案点睛】
本题主要考查空间中线线,线面,面面的位置关系,以及充要条件的判断,考查学生综合运用知识的能力.解决充要条件判断问题,关键是要弄清楚谁是条件,谁是结论.
3、C
【答案解析】
利用直角三角形三边与内切圆半径的关系求出半径,再分别求出三角形和内切圆的面积,根据几何概型的概率计算公式,即可求解.
【题目详解】
由题意,直角三角形的斜边长为,
利用等面积法,可得其内切圆的半径为,
所以向次三角形内投掷豆子,则落在其内切圆内的概率为.
故选:C.
【答案点睛】
本题主要考查了面积比的几何概型的概率的计算问题,其中解答中熟练应用直角三角形的性质,求得其内切圆的半径是解答的关键,着重考查了推理与运算能力.
4、A
【答案解析】
由的最小正周期是,得,
即
,
因此它的图象向左平移个单位可得到的图象.故选A.
考点:函数的图象与性质.
【名师点睛】
三角函数图象变换方法:
5、A
【答案解析】
所求的分母特征,利用变形构造,再等价变形,利用基本不等式求最值.
【题目详解】
解:因为满足,
则
,
当且仅当时取等号,
故选:.
【答案点睛】
本题考查通过拼凑法利用基本不等式求最值.拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键.(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标(3)拆项、添项应注意检验利用基本不等式的前提.
6、B
【答案解析】
先求出集合和它的补集,然后求得集合的解集,最后取它们的交集得出结果.
【题目详解】
对于集合A,,解得或,故.对于集合B,,解得.故.故选B.
【答案点睛】
本小题主要考查一元二次不等式的解法,考查对数不等式的解法,考查集合的补集和交集的运算.对于有两个根的一元二次不等式的解法是:先将二次项系数化为正数,且不等号的另一边化为,然后通过因式分解,求得对应的一元二次方程的两个根,再利用“大于在两边,小于在中间”来求得一元二次不等式的解集.
7、A
【答案解析】
利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值.
【题目详解】
原式.
故选:A
【答案点睛】
本小题主要考查诱导公式,考查对数运算,属于基础题.
8、A
【答案解析】
利用切割线定理求得,利用勾股定理求得圆心到弦的距离,从而求得,结合,求得直线的倾斜角为,进而求得的斜率.
【题目详解】
曲线为圆的上半部分,圆心为,半径为.
设与曲线相切于点,
则
所以
到弦的距离为,,所以,由于,所以直线的倾斜角为,斜率为.
故选:A
【答案点睛】
本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.
9、C
【答案解析】
求出,直接由复数的代数形式的乘除运算化简复数.
【题目详解】
.
故选:C
【答案点睛】
本题考查复数的代数形式的四则运算,共轭复数,属于基础题.
10、A
【答案解析】
利用正弦定理边角互化思想结合余弦定理可求得角的值,再利用正弦定理可求得的值.
【题目详解】
,由正弦定理得,整理得,
由余弦定理得,,.
由正弦定理得.
故选:A.
【答案点睛】
本题考查利用正弦定理求值,涉及正弦定理边角互化思想以及余弦定理的应用,考查计算能力,属于中等题.
11、B
【答案解析】
由题意,框图的作用是求分段函数的值域,求解即得解.
【题目详解】
由题意可知,
框图的作用是求分段函数的值域,
当;
当
综上:.
故选:B
【答案点睛】
本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.
12、C
【答案解析】
先求出五个“完全数”随机分为两组,一组2个,另一组3个的基本事件总数为,再求出6和28恰好在同一组包含的基本事件个数,根据即可求出6和28不在同一组的概率.
【题目详解】
解:根据题意,将五个“完全数”随机分为两组,一组2个,另一组3个,
则基本事件总数为,
则6和28恰好在同一组包含的基本事件个数,
∴6和28不在同一组的概率.
故选:C.
【答案点睛】
本题考查古典概型的概率的求法,涉及实际问题中组合数的应用.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
直接根据集合和集合求交集即可.
【题目详解】
解: ,
,
所以.
故答案为:
【答案点睛】
本题考查集合的交集运算,是基础题.
14、
【答案解析】
由题意容积,求导研究单调性,分析即得解.
【题目详解】
由题意:容积,,
则,
由得或(舍去),
令
则为V在定义域内唯一的极大值点也是最大值点,此时.
故答案为:
【答案点睛】
本题考查了导数在实际问题中的应用,考查了学生数学建模,转化划归,数学运算的能力,属于中档题.
15、充分必要
【答案解析】
根据充分条件和必要条件的定义可判断两者之间的条件关系.
【题目详解】
当时,有,故“”是“”的充分条件.
当时,有,故“”是“”的必要条件.
故“”是“”的充分必要条件,
故答案为:充分必要.
【答案点睛】
本题考查充分必要条件的判断,可利用定义来判断,也可以根据两个条件构成命题及逆命题的真假来判断,还可以利用两个条件对应的集合的包含关系来判断,本题属于容易题.
16、②
【答案解析】
根据新定义,结合实数的性质即可判断①②③,由定义求得比小的有理数个数,即可确定④.
【题目详解】
对于①,由定义可知,当为有理数时;当为无理数时,则值域为,所以①错误;
对于②,因为有理数的相反数还是有理数,无理数的相反数还是无理数,所以满足,所以②正确;
对于③,因为,当为无理数时,可以是有理数,也可以是无理数,所以③错误;
对于④,由定义可知
,所以④错误;
综上可知,正确的为②.
故答案为:②.
【答案点睛】
本题考查了新定义函数的综合应用,正确理解题意是解决此类问题的关键,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)(2)见解析
【答案解析】
(1)求出函数的导函数,依题意可得在上恒成立,参变分离得在上恒成立.设,求出即可得到参数的取值范围;
(2)不妨设,,,
利用导数说明函数在上是减函数,即可得证;
【题目详解】
解:(1)∵
∴,且函数在上为减函数,即在上恒成立,
∴在上恒成立.设,
∵函数在上单调递增,∴,
∴,∴实数的取值范围为.
(2)不妨设,,,
则,
∴.
∵,∴,
又,令,∴,
∴在上为减函数,∴,
∴,即,
∴在上是减函数,∴,即,
∴,
∴当时,.
∵,∴.
【答案点睛】
本题考查了利用导数研究函数的单调性、极值与最值,利用导数证明不等式,考查了推理能