分享
2023学年河北省承德县第一中学高三第一次模拟考试数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 河北省 承德县 第一 中学 第一次 模拟考试 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于( ). A. B. C. D. 2.已知、,,则下列是等式成立的必要不充分条件的是( ) A. B. C. D. 3.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为( ) A. B. C. D. 4.要得到函数的图象,只需将函数的图象 A.向左平移个单位长度 B.向右平移个单位长度 C.向左平移个单位长度 D.向右平移个单位长度 5.若复数满足(是虚数单位),则的虚部为( ) A. B. C. D. 6.设函数(,)是上的奇函数,若的图象关于直线对称,且在区间上是单调函数,则( ) A. B. C. D. 7.已知命题:,,则为( ) A., B., C., D., 8.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)为( ) A. B.6 C. D. 9.已知全集,函数的定义域为,集合,则下列结论正确的是 A. B. C. D. 10.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市月至月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是( ) A.1月至8月空气合格天数超过天的月份有个 B.第二季度与第一季度相比,空气达标天数的比重下降了 C.8月是空气质量最好的一个月 D.6月份的空气质量最差. 11.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是( ) A. B. C. D. 12.下图是民航部门统计的某年春运期间,六个城市售出的往返机票的平均价格(单位元),以及相比于上一年同期价格变化幅度的数据统计图,以下叙述不正确的是( ) A.深圳的变化幅度最小,北京的平均价格最高 B.天津的往返机票平均价格变化最大 C.上海和广州的往返机票平均价格基本相当 D.相比于上一年同期,其中四个城市的往返机票平均价格在增加 二、填空题:本题共4小题,每小题5分,共20分。 13.已知是定义在上的奇函数,当时,,则不等式的解集用区间表示为__________. 14.展开式中项系数为160,则的值为______. 15.已知数列的前项和公式为,则数列的通项公式为___. 16.如图是一个算法伪代码,则输出的的值为_______________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)如图,四边形是边长为3的菱形,平面. (1)求证:平面; (2)若与平面所成角为,求二面角的正弦值. 18.(12分)已知中,内角所对边分别是其中. (1)若角为锐角,且,求的值; (2)设,求的取值范围. 19.(12分)已知函数. (1)当时. ①求函数在处的切线方程; ②定义其中,求; (2)当时,设,(为自然对数的底数),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围. 20.(12分)已知抛物线的准线过椭圆C:(a>b>0)的左焦点F,且点F到直线l:(c为椭圆焦距的一半)的距离为4. (1)求椭圆C的标准方程; (2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程. 21.(12分)在平面直角坐标系中,直线的参数方程为 (为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为. (1)写出直线的普通方程和圆的直角坐标方程; (2)若点坐标为,圆与直线交于两点,求的值. 22.(10分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为. (Ⅰ)求直线的直角坐标方程与曲线的普通方程; (Ⅱ)已知点设直线与曲线相交于两点,求的值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C. 2、D 【答案解析】 构造函数,,利用导数分析出这两个函数在区间上均为减函数,由得出,分、、三种情况讨论,利用放缩法结合函数的单调性推导出或,再利用余弦函数的单调性可得出结论. 【题目详解】 构造函数,, 则,, 所以,函数、在区间上均为减函数, 当时,则,;当时,,. 由得. ①若,则,即,不合乎题意; ②若,则,则, 此时,, 由于函数在区间上单调递增,函数在区间上单调递增,则,; ③若,则,则, 此时, 由于函数在区间上单调递减,函数在区间上单调递增,则,. 综上所述,. 故选:D. 【答案点睛】 本题考查函数单调性的应用,构造新函数是解本题的关键,解题时要注意对的取值范围进行分类讨论,考查推理能力,属于中等题. 3、B 【答案解析】 试题分析:由题意得,,所以,,所求双曲线方程为. 考点:双曲线方程. 4、D 【答案解析】 先将化为,根据函数图像的平移原则,即可得出结果. 【题目详解】 因为, 所以只需将的图象向右平移个单位. 【答案点睛】 本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型. 5、A 【答案解析】 由得,然后分子分母同时乘以分母的共轭复数可得复数,从而可得的虚部. 【题目详解】 因为, 所以, 所以复数的虚部为. 故选A. 【答案点睛】 本题考查了复数的除法运算和复数的概念,属于基础题.复数除法运算的方法是分子分母同时乘以分母的共轭复数,转化为乘法运算. 6、D 【答案解析】 根据函数为上的奇函数可得,由函数的对称轴及单调性即可确定的值,进而确定函数的解析式,即可求得的值. 【题目详解】 函数(,)是上的奇函数, 则,所以. 又的图象关于直线对称可得,,即,, 由函数的单调区间知,, 即, 综上,则, . 故选:D 【答案点睛】 本题考查了三角函数的图象与性质的综合应用,由对称轴、奇偶性及单调性确定参数,属于中档题. 7、C 【答案解析】 根据全称量词命题的否定是存在量词命题,即得答案. 【题目详解】 全称量词命题的否定是存在量词命题,且命题:,, . 故选:. 【答案点睛】 本题考查含有一个量词的命题的否定,属于基础题. 8、D 【答案解析】 根据几何体的三视图,该几何体是由正方体去掉三棱锥得到,根据正方体和三棱锥的体积公式可求解. 【题目详解】 如图,该几何体为正方体去掉三棱锥, 所以该几何体的体积为:, 故选:D 【答案点睛】 本题主要考查了空间几何体的三视图以及体积的求法,考查了空间想象力,属于中档题. 9、A 【答案解析】 求函数定义域得集合M,N后,再判断. 【题目详解】 由题意,,∴. 故选A. 【答案点睛】 本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定. 10、D 【答案解析】 由图表可知月空气质量合格天气只有天,月份的空气质量最差.故本题答案选. 11、A 【答案解析】 分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项. 【题目详解】 对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题. 、、都是假命题. 故选:A 【答案点睛】 本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题. 12、D 【答案解析】 根据条形图可折线图所包含的数据对选项逐一分析,由此得出叙述不正确的选项. 【题目详解】 对于A选项,根据折线图可知深圳的变化幅度最小,根据条形图可知北京的平均价格最高,所以A选项叙述正确. 对于B选项,根据折线图可知天津的往返机票平均价格变化最大,所以B选项叙述正确. 对于C选项,根据条形图可知上海和广州的往返机票平均价格基本相当,所以C选项叙述正确. 对于D选项,根据折线图可知相比于上一年同期,除了深圳外,另外五个城市的往返机票平均价格在增加,故D选项叙述错误. 故选:D 【答案点睛】 本小题主要考查根据条形图和折线图进行数据分析,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 设 ,则 ,由题意可得 故当 时, 由不等式 ,可得 ,或 求得 ,或 故答案为( 14、-2 【答案解析】 表示该二项式的展开式的第r+1项,令其指数为3,再代回原表达式构建方程求得答案. 【题目详解】 该二项式的展开式的第r+1项为 令,所以,则 故答案为: 【答案点睛】 本题考查由二项式指定项的系数求参数,属于简单题. 15、 【答案解析】 由题意,根据数列的通项与前n项和之间的关系,即可求得数列的通项公式. 【题目详解】 由题意,可知当时,; 当时,. 又因为不满足,所以. 【答案点睛】 本题主要考查了利用数列的通项与前n项和之间的关系求解数列的通项公式,其中解答中熟记数列的通项与前n项和之间的关系,合理准确推导是解答的关键,着重考查了推理与运算能力,属于基础题. 16、5 【答案解析】 执行循环结构流程图,即得结果. 【题目详解】 执行循环结构流程图得,结束循环,输出. 【答案点睛】 本题考查循环结构流程图,考查基本分析与运算能力,属基础题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)证明见解析(2) 【答案解析】 (1)由已知线面垂直得,结合菱形对角线垂直,可证得线面垂直; (2)由已知知两两互相垂直.以分别为轴,轴,轴建立空间直角坐标系如图所示,由已知线面垂直知与平面所成角为,这样可计算出的长,写出各点坐标,求出平面的法向量,由法向量夹角可得二面角. 【题目详解】 证明:(1)因为平面,平面,所以. 因为四边形是菱形,所以. 又因为,平面,平面, 所以平面. 解:(2)据题设知,两两互相垂直.以分别为轴,轴,轴建立空间直角坐标系如图所示, 因为与平面所成角为,即,所以 又,所以, 所以 所以 设平面的一个法向量,则令,则. 因为平面,所以为平面的一个法向量,且 所以, . 所以二面角的正弦值为. 【答案点睛】 本题考查线面垂直的判定定理和性质定理,考查用向量法求二面角.立体几何中求空间角常常是建立空间直角坐标系,用空间向量法求空间角,这样可减少思维量,把问题转化为计算.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开