温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
江西省
赣州市
博雅
文高三
考前
热身
数学试卷
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设递增的等比数列的前n项和为,已知,,则( )
A.9 B.27 C.81 D.
2.已知函数,且的图象经过第一、二、四象限,则,,的大小关系为( )
A. B.
C. D.
3.已知实数集,集合,集合,则( )
A. B. C. D.
4.一个盒子里有4个分别标有号码为1,2,3,4的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有( )
A.17种 B.27种 C.37种 D.47种
5.把函数的图象向右平移个单位,得到函数的图象.给出下列四个命题
①的值域为
②的一个对称轴是
③的一个对称中心是
④存在两条互相垂直的切线
其中正确的命题个数是( )
A.1 B.2 C.3 D.4
6.已知是等差数列的前项和,若,,则( )
A.5 B.10 C.15 D.20
7.“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门。该款软件主要设有“阅读文章”、“视听学习”两个学习模块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题模块。某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有( )
A.60 B.192 C.240 D.432
8.设P={y |y=-x2+1,x∈R},Q={y |y=2x,x∈R},则
A.P Q B.Q P
C.Q D.Q
9.若复数(为虚数单位),则的共轭复数的模为( )
A. B.4 C.2 D.
10.函数的对称轴不可能为( )
A. B. C. D.
11.在正方体中,,分别为,的中点,则异面直线,所成角的余弦值为( )
A. B. C. D.
12.设,则,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.对于任意的正数,不等式恒成立,则的最大值为_____.
14.在的展开式中,的系数为________.
15.双曲线的焦距为__________,渐近线方程为________.
16.点P是△ABC所在平面内一点且在△ABC内任取一点,则此点取自△PBC内的概率是____
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆,上顶点为,离心率为,直线交轴于点,交椭圆于,两点,直线,分别交轴于点,.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:为定值.
18.(12分)如图,已知椭圆,为其右焦点,直线与椭圆交于两点,点在上,且满足.(点从上到下依次排列)
(I)试用表示:
(II)证明:原点到直线l的距离为定值.
19.(12分)如图,在四棱锥中底面是菱形,,是边长为的正三角形,,为线段的中点.
求证:平面平面;
是否存在满足的点,使得?若存在,求出的值;若不存在,请说明理由.
20.(12分)在直角坐标系中,直线的参数方程为,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)若点是直线的一点,过点作曲线的切线,切点为,求的最小值.
21.(12分)已知函数.
(1)若,,求函数的单调区间;
(2)时,若对一切恒成立,求a的取值范围.
22.(10分)已知函数,.
(1)当时,求不等式的解集;
(2)当时,不等式恒成立,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
根据两个已知条件求出数列的公比和首项,即得的值.
【题目详解】
设等比数列的公比为q.
由,得,解得或.
因为.且数列递增,所以.
又,解得,
故.
故选:A
【答案点睛】
本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.
2、C
【答案解析】
根据题意,得,,则为减函数,从而得出函数的单调性,可比较和,而,比较,即可比较.
【题目详解】
因为,且的图象经过第一、二、四象限,
所以,,
所以函数为减函数,函数在上单调递减,在上单调递增,
又因为,
所以,
又,,
则|,
即,
所以.
故选:C.
【答案点睛】
本题考查利用函数的单调性比较大小,还考查化简能力和转化思想.
3、A
【答案解析】
可得集合,求出补集,再求出即可.
【题目详解】
由,得,即,
所以,
所以.
故选:A
【答案点睛】
本题考查了集合的补集和交集的混合运算,属于基础题.
4、C
【答案解析】
由于是放回抽取,故每次的情况有4种,共有64种;先找到最大值不是4的情况,即三次取出标号均不为4的球的情况,进而求解.
【题目详解】
所有可能的情况有种,其中最大值不是4的情况有种,所以取得小球标号最大值是4的取法有种,
故选:C
【答案点睛】
本题考查古典概型,考查补集思想的应用,属于基础题.
5、C
【答案解析】
由图象变换的原则可得,由可求得值域;利用代入检验法判断②③;对求导,并得到导函数的值域,即可判断④.
【题目详解】
由题,,
则向右平移个单位可得,
,的值域为,①错误;
当时,,所以是函数的一条对称轴,②正确;
当时,,所以的一个对称中心是,③正确;
,则,使得,则在和处的切线互相垂直,④正确.
即②③④正确,共3个.
故选:C
【答案点睛】
本题考查三角函数的图像变换,考查代入检验法判断余弦型函数的对称轴和对称中心,考查导函数的几何意义的应用.
6、C
【答案解析】
利用等差通项,设出和,然后,直接求解即可
【题目详解】
令,则,,∴,,∴.
【答案点睛】
本题考查等差数列的求和问题,属于基础题
7、C
【答案解析】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法.注意按“阅读文章”分类.
【题目详解】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为.
故选:C.
【答案点睛】
本题考查排列组合的应用,考查捆绑法和插入法求解排列问题.对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法.
8、C
【答案解析】
解:因为P ={y|y=-x2+1,x∈R}={y|y1},Q ={y| y=2x,x∈R }={y|y>0},因此选C
9、D
【答案解析】
由复数的综合运算求出,再写出其共轭复数,然后由模的定义计算模.
【题目详解】
,.
故选:D.
【答案点睛】
本题考查复数的运算,考查共轭复数与模的定义,属于基础题.
10、D
【答案解析】
由条件利用余弦函数的图象的对称性,得出结论.
【题目详解】
对于函数,令,解得,
当时,函数的对称轴为,,.
故选:D.
【答案点睛】
本题主要考查余弦函数的图象的对称性,属于基础题.
11、D
【答案解析】
连接,,因为,所以为异面直线与所成的角(或补角),
不妨设正方体的棱长为2,取的中点为,连接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.
【题目详解】
连接,,因为,所以为异面直线与所成的角(或补角),
不妨设正方体的棱长为2,则,,
在等腰中,取的中点为,连接,
则,,
所以,
即:,
所以异面直线,所成角的余弦值为.
故选:D.
【答案点睛】
本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力.
12、A
【答案解析】
根据换底公式可得,再化简,比较的大小,即得答案.
【题目详解】
,
,
.
,显然.
,即,
,即.
综上,.
故选:.
【答案点睛】
本题考查换底公式和对数的运算,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
根据均为正数,等价于恒成立,令,转化为恒成立,利用基本不等式求解最值.
【题目详解】
由题均为正数,不等式恒成立,等价于
恒成立,
令则,
当且仅当即时取得等号,
故的最大值为.
故答案为:
【答案点睛】
此题考查不等式恒成立求参数的取值范围,关键在于合理进行等价变形,此题可以构造二次函数求解,也可利用基本不等式求解.
14、
【答案解析】
根据二项展开式定理,求出含的系数和含的系数,相乘即可.
【题目详解】
的展开式中,
所求项为:,
的系数为.
故答案为:.
【答案点睛】
本题考查二项展开式定理的应用,属于基础题.
15、6
【答案解析】
由题得 所以焦距,故第一个空填6.
由题得渐近线方程为.故第二个空填.
16、
【答案解析】
设是中点,根据已知条件判断出三点共线且是线段靠近的三等分点,由此求得,结合几何概型求得点取自三角形的概率.
【题目详解】
设是中点,因为,所以,所以三点共线且点是线段靠近的三等分点,
故,所以此点取自内的概率是.
故答案为:
【答案点睛】
本小题主要考查三点共线的向量表示,考查几何概型概率计算,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(Ⅰ);(Ⅱ),证明见解析.
【答案解析】
(Ⅰ)根据题意列出关于,,的方程组,解出,,的值,即可得到椭圆的方程;
(Ⅱ)设点,,点,,易求直线的方程为:,令得,,同理可得,所以
,联立直线与椭圆方程,利用韦达定理代入上式,化简即可得到.
【题目详解】
(Ⅰ)解:由题意可知:,解得,
椭圆的方程为:;
(Ⅱ)证:设点,,点,,
联立方程,消去得:,
,①,
点,,,
直线的方程为:,令得,,,,
同理可得,,
,
把①式代入上式得:,
为定值.
【答案点睛】
本题主要考查直线与椭圆的位置关系、定值问题的求解;关键是能够通过直线与椭圆联立得到韦达定理的形式,利用韦达定理化简三角形面积得到定值;考查计算能力与推理能力,属于中档题.
18、 (I) ;(II)证明见解析
【答案解析】
(I)直接利用两点间距离公式化简得到答案.
(II) 设,,联立方程得到,,代入化简得到,计算得到证明.
【题目详解】
(I) 椭圆,故,
.
(II)设,,则将代入得到:
,故,
,
,故,得到,
,故,同理:,
由已知得:或,
故,
即,化简得到.
故原点到直线l的距离为为定值.
【答案点睛】
本题考查了椭圆内的线段长度,定值问题,意在考查学生的计算能力和综合应用能力.
19、证明见解析;2.
【答案解析】
利用面面垂直的判定定理证明即可;
由,知,所以可得出,因此,的充要条件是,继而得出的值.
【题目详解】
解:证明:因为是正三角形,为线段的中点,
所以.
因为是菱形,所以.
因为,
所以是正三角形,
所以,而,
所以平面.
又,
所以平面.
因为平面,
所以平面平面.
由,知.
所以,,
.