温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
中考
数学
基础
题型
提分讲练
专题
20
相似
三角形
背景
证明
计算
解析
专题20 以相似三角形为背景的证明与计算
考点分析
【例1】(2023年·辽宁中考真题)已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD为直角边作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.
(1)如图1,当BC=AC,CE=CD,DF=AD时,
求证:①∠CAD=∠CDF,
②BD=EF;
(2)如图2,当BC=2AC,CE=2CD,DF=2AD时,猜想BD和EF之间的数量关系?并说明理由.
【答案】(1)①见解析;②见解析;(2)BD=EF,理由见解析.
【解析】
(1)证明:①∵∠ACB=90°,
∴∠CAD+∠ADC=90°,
∵∠CDF+∠ADC=90°,
∴∠CAD=∠CDF;
②作FH⊥BC交BC的延长线于H,
则四边形FECH为矩形,
∴CH=EF,
在△ACD和△DHF中,
,
,
,
,
,即,
;
(2),
理由如下:作交的延长线于,
则四边形为矩形,
,
,,
,
,即,GF=2CD,
∵BC=2AC,CE=2CD,
∴BC=DG,GF=CE,
∴BD=CG,
∵GF∥CE,GF=CE,∠G=90°,
∴四边形FECG为矩形,
∴CG=EF,
∴BD=EF.
【点睛】
此题考查相似三角形的判定与性质,全等三角形的判定与性质,矩形的判定与性质,解题关键在于作辅助线和掌握各判定定理.
【例2】 (2023年·辽宁中考真题)如图,中,,DE垂直平分AB,交线段BC于点E(点E与点C不重合),点F为AC上一点,点G为AB上一点(点G与点A不重合),且.
(1)如图1,当时,线段AG和CF的数量关系是 .
(2)如图2,当时,猜想线段AG和CF的数量关系,并加以证明.
(3)若,,,请直接写出CF的长.
【答案】(1);(2),理由见解析;(3)2.5或5
【解析】
解:(1)相等,理由:如图1,连接AE,
∵DE垂直平分AB,
,
,
,
,
,,
,
,
,
,
,
,
;
故答案为:;
(2),
理由:如图2,连接AE,
,
,
,
∵DE垂直平分AB,
,
,
,,
,
,
,
,
,
,
在中,,
,
,
;
(3)①当G在DA上时,如图3,连接AE,
∵DE垂直平分AB,
,,
,
,
,
,
,
,
,
,
,
,
,
,
,
过A作于点H,
,
,
,
,
,
,
,
,
;
②当点G在BD上,如图4,同(1)可得,,
,
,
,
,
综上所述,CF的长为2.5或5.
【点睛】
本题考查了等腰三角形的性质,线段垂直平分线的性质,全等三角形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.
考点集训
1.(2023年·山东中考真题)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
① 当时, ;② 当时,
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.
(3)问题解决
当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.
【答案】(1)①,②.(2)无变化;理由参见解析.(3),.
【解析】
(1)①当α=0°时,
∵Rt△ABC中,∠B=90°,
∴AC=,
∵点D、E分别是边BC、AC的中点,
∴,BD=8÷2=4,
∴.
②如图1,
,
当α=180°时,
可得AB∥DE,
∵,
∴
(2)如图2,
,
当0°≤α<360°时,的大小没有变化,
∵∠ECD=∠ACB,
∴∠ECA=∠DCB,
又∵,
∴△ECA∽△DCB,
∴.
(3)①如图3,
,
∵AC=4,CD=4,CD⊥AD,
∴AD=
∵AD=BC,AB=DC,∠B=90°,
∴四边形ABCD是矩形,
∴BD=AC=.
②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,
,
∵AC=,CD=4,CD⊥AD,
∴AD=,
∵点D、E分别是边BC、AC的中点,
∴DE==2,
∴AE=AD-DE=8-2=6,
由(2),可得
,
∴BD=.
综上所述,BD的长为或.
2.(2023年·江苏初三期末)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,
(1)求证:AC2=AB•AD;
(2)求证:CE∥AD;
(3)若AD=4,AB=6,求的值.
【答案】(1)见解析(2)见解析(3).
【解析】
解:(1)证明:∵AC平分∠DAB
∴∠DAC=∠CAB.
∵∠ADC=∠ACB=90°
∴△ADC∽△ACB.
∴
即AC2=AB•AD.
(2)证明:∵E为AB的中点
∴CE=AB=AE
∴∠EAC=∠ECA.
∵∠DAC=∠CAB
∴∠DAC=∠ECA
∴CE∥AD.
(3)∵CE∥AD
∴△AFD∽△CFE
∴.
∵CE=AB
∴CE=×6=3.
∵AD=4
∴
∴.
3.(2023年·四川中考真题)如图,,DB平分∠ADC,过点B作交AD于M.连接CM交DB于N.
(1)求证:;(2)若,求MN的长.
【答案】(1)见解析;(2).
【解析】
证明:(1)∵DB平分,
,且,
(2)
,且
,且,
,
且
【点睛】
考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC的长度是本题的关键.
4.(2023年·江苏泰州中学附属初中初三月考)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒(0<t<),连接MN.
(1)若△BMN与△ABC相似,求t的值;
(2)连接AN,CM,若AN⊥CM,求t的值.
【答案】(1)△BMN与△ABC相似时,t的值为或;(2)t=
【解析】
(1)由题意知,BM=3tcm,CN=2tcm,∴BN=(8﹣2t)cm,BA==10(cm),当△BMN∽△BAC时,,∴,解得:t=;
当△BMN∽△BCA时,,∴,解得:t=,
∴△BMN与△ABC相似时,t的值为或;
(2)过点M作MD⊥CB于点D,由题意得:DM=BMsinB==(cm),BD=BMcosB==(cm),BM=3tcm,CN=2tcm,∴CD=()cm,∵AN⊥CM,∠ACB=90°,∴∠CAN+∠ACM=90°,∠MCD+∠ACM=90°,∴∠CAN=∠MCD,∵MD⊥CB,∴∠MDC=∠ACB=90°,∴△CAN∽△DCM,∴,∴,解得t=.
考点:1.相似三角形的判定与性质;2.解直角三角形;3.动点型;4.分类讨论;5.综合题;6.压轴题.
5.(2023年·湖北中考真题)在中,,,是上一点,连接
(1)如图1,若,是延长线上一点,与垂直,求证:
(2)过点作,为垂足,连接并延长交于点.
①如图2,若,求证:
②如图3,若是的中点,直接写出的值(用含的式子表示)
【答案】(1)证明见解析;(2)①证明见解析;②
【解析】
(1)延长交于点,
∵与垂直,,
∴,,
∴,
∵,,
∴,,
∴,
∴;
(2)①过点作交的延长线于点,
∵,∴与垂直,
由(1),得,
∵,
∴,即;
②过点C作CD//BP交AB的延长线于点D,延长AM交CD于点H,
∴∠PCH=∠BPQ,
∵,∴⊥,
∴∠BPM=∠CHM=90°,
又∵∠BMP=∠CMH,BM=CM,
∴△BPM≌△CHM,
∴BP=CH,PM=HM,
∴PH=2PM,
∵∠PMB=∠BMA,∠ABM=∠BPM=90°,
∴△ABM∽△BPM,
∴,
在Rt△PCH中,tan∠PCH=,
∴tan∠BPQ=,
又∵BC=2BM,,
∴tan∠BPQ=.
【点睛】
本题考查了全等三角形的判定与性质,相似三角形的判定与性质,三角函数,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.
6.(2023年·辽宁初三期中)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,
(1)求证:AC•CD=CP•BP;
(2)若AB=10,BC=12,当PD∥AB时,求BP的长.
【答案】(1)证明见解析;(2).
【解析】
解:(1)∵AB=AC,∴∠B=∠C.
∵∠APD=∠B,∴∠APD=∠B=∠C.
∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,
∴∠BAP=∠DPC,
∴△ABP∽△PCD,
∴,
∴AB•CD=CP•BP.
∵AB=AC,
∴AC•CD=CP•BP;
(2)∵PD∥AB,∴∠APD=∠BAP.
∵∠APD=∠C,∴∠BAP=∠C.
∵∠B=∠B,
∴△BAP∽△BCA,
∴.
∵AB=10,BC=12,
∴,
∴BP=.
“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP转化为证明AB•CD=CP•BP是解决第(1)小题的关键,证到∠BAP=∠C进而得到△BAP∽△BCA是解决第(2)小题的关键.
7.(2023年·山西初三期末)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.
(1)求证:BD=CE;
(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;
【答案】(1)证明见解析;(2)PB的长为或.
【解析】
解:(1)∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,
∴AB=AC,AD=AE,∠DAB=∠CAE,
∴△ADB≌△AEC,
∴BD=CE.
(2)解:①当点E在AB上时,BE=AB﹣AE=1.
∵∠EAC=90°,
∴CE==.
同(1)可证△ADB≌△AEC,
∴∠DBA=∠ECA.
∵∠PEB=∠AEC,
∴△PEB∽△AEC,
∴,
∴,
∴PB=.
②当点E在BA延长线上时,BE=3.
∵∠EAC=90°,
∴CE==.
同(1)可证△ADB≌△AEC,
∴∠DBA=∠ECA.
∵∠BEP=∠CEA,
∴△PEB∽△AEC,
∴,
∴,
∴PB=.
综上所述,PB的长为或.
【点睛】
本题主要考查的是旋转的性质、等腰三角形的性质、全等三角形的性质和判定、相似三角形的性质和判定,证明得△PEB∽△AEC是解题的关键.
8.(2023年·山东初三)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.
(1)求证:BN平分∠ABE;
(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;
(3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.
【答案】(1)证明见解析;(2);(3)证明见解析.
【解析】
(1)∵AB=AC,
∴∠ABC=∠ACB,