分享
吉林省“五地六校”合作体2023学年高考数学一模试卷(含解析).doc
下载文档

ID:21162

大小:2.02MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
吉林省 合作 2023 学年 高考 数学 试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.以下关于的命题,正确的是 A.函数在区间上单调递增 B.直线需是函数图象的一条对称轴 C.点是函数图象的一个对称中心 D.将函数图象向左平移需个单位,可得到的图象 2.设实数、满足约束条件,则的最小值为( ) A.2 B.24 C.16 D.14 3.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式). A.2寸 B.3寸 C.4寸 D.5寸 4.已知函数,若函数的所有零点依次记为,且,则( ) A. B. C. D. 5.已知向量,,则向量与的夹角为( ) A. B. C. D. 6.在中,角所对的边分别为,已知,则( ) A.或 B. C. D.或 7.小明有3本作业本,小波有4本作业本,将这7本作业本混放在-起,小明从中任取两本.则他取到的均是自己的作业本的概率为( ) A. B. C. D. 8.已知集合,,则 A. B. C. D. 9.已知正项等比数列中,存在两项,使得,,则的最小值是( ) A. B. C. D. 10.在条件下,目标函数的最大值为40,则的最小值是( ) A. B. C. D.2 11.已知集合,,,则( ) A. B. C. D. 12.的展开式中的系数为( ) A.-30 B.-40 C.40 D.50 二、填空题:本题共4小题,每小题5分,共20分。 13.已知函数,,若函数有3个不同的零点x1,x2,x3(x1<x2<x3),则的取值范围是_________. 14. “学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现已日益成为老百姓了解国家动态,紧跟时代脉搏的热门app.该款软件主要设有“阅读文章”和“视听学习”两个学习板块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题板块.某人在学习过程中,将六大板块依次各完成一次,则“阅读文章”与“视听学习”两大学习板块之间最多间隔一个答题板块的学习方法有________种. 15.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________. 16.已知,满足,则的展开式中的系数为______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数. (1)讨论的单调性; (2)函数,若对于,使得成立,求的取值范围. 18.(12分)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为;直线l的参数方程为(t为参数).直线l与曲线C分别交于M,N两点. (1)写出曲线C的直角坐标方程和直线l的普通方程; (2)若点P的极坐标为,,求的值. 19.(12分)已知矩形中,,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接. (1)求证:平面; (2)求二面角的余弦值. 20.(12分)根据国家统计局数据,1978年至2018年我国GDP总量从0.37万亿元跃升至90万亿元,实际增长了242倍多,综合国力大幅提升. 将年份1978,1988,1998,2008,2018分别用1,2,3,4,5代替,并表示为;表示全国GDP总量,表中,. 3 26.474 1.903 10 209.76 14.05 (1)根据数据及统计图表,判断与(其中为自然对数的底数)哪一个更适宜作为全国GDP总量关于的回归方程类型?(给出判断即可,不必说明理由),并求出关于的回归方程. (2)使用参考数据,估计2020年的全国GDP总量. 线性回归方程中斜率和截距的最小二乘法估计公式分别为: ,. 参考数据: 4 5 6 7 8 的近似值 55 148 403 1097 2981 21.(12分)在平面直角坐标系中,已知椭圆:()的左、右焦点分别为、,且点、与椭圆的上顶点构成边长为2的等边三角形. (1)求椭圆的方程; (2)已知直线与椭圆相切于点,且分别与直线和直线相交于点、.试判断是否为定值,并说明理由. 22.(10分)如图1,在等腰中,,,分别为,的中点,为的中点,在线段上,且。将沿折起,使点到的位置(如图2所示),且。 (1)证明:平面; (2)求平面与平面所成锐二面角的余弦值 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 利用辅助角公式化简函数得到,再逐项判断正误得到答案. 【题目详解】 A选项,函数先增后减,错误 B选项,不是函数对称轴,错误 C选项,,不是对称中心,错误 D选项,图象向左平移需个单位得到,正确 故答案选D 【答案点睛】 本题考查了三角函数的单调性,对称轴,对称中心,平移,意在考查学生对于三角函数性质的综合应用,其中化简三角函数是解题的关键. 2、D 【答案解析】 做出满足条件的可行域,根据图形即可求解. 【题目详解】 做出满足的可行域,如下图阴影部分, 根据图象,当目标函数过点时,取得最小值, 由,解得,即, 所以的最小值为. 故选:D. 【答案点睛】 本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题. 3、B 【答案解析】 试题分析:根据题意可得平地降雨量,故选B. 考点:1.实际应用问题;2.圆台的体积. 4、C 【答案解析】 令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值. 【题目详解】 令,得,即对称轴为. 函数周期,令,可得.则函数在上有8条对称轴. 根据正弦函数的性质可知, 将以上各式相加得: 故选:C. 【答案点睛】 本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式. 5、C 【答案解析】 求出,进而可求,即能求出向量夹角. 【题目详解】 解:由题意知,. 则 所以,则向量与的夹角为. 故选:C. 【答案点睛】 本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式 进行计算. 6、D 【答案解析】 根据正弦定理得到,化简得到答案. 【题目详解】 由,得, ∴,∴或,∴或. 故选: 【答案点睛】 本题考查了正弦定理解三角形,意在考查学生的计算能力. 7、A 【答案解析】 利用计算即可,其中表示事件A所包含的基本事件个数,为基本事件总数. 【题目详解】 从7本作业本中任取两本共有种不同的结果,其中,小明取到的均是自己的作业本有种不同结果, 由古典概型的概率计算公式,小明取到的均是自己的作业本的概率为. 故选:A. 【答案点睛】 本题考查古典概型的概率计算问题,考查学生的基本运算能力,是一道基础题. 8、D 【答案解析】 因为,,所以,,故选D. 9、C 【答案解析】 由已知求出等比数列的公比,进而求出,尝试用基本不等式,但取不到等号,所以考虑直接取的值代入比较即可. 【题目详解】 ,,或(舍). ,,. 当,时; 当,时; 当,时,,所以最小值为. 故选:C. 【答案点睛】 本题考查等比数列通项公式基本量的计算及最小值,属于基础题. 10、B 【答案解析】 画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案. 【题目详解】 如图所示,画出可行域和目标函数,根据图像知: 当时,有最大值为,即,故. . 当,即时等号成立. 故选:. 【答案点睛】 本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力. 11、A 【答案解析】 求得集合中函数的值域,由此求得,进而求得. 【题目详解】 由,得,所以,所以. 故选:A 【答案点睛】 本小题主要考查函数值域的求法,考查集合补集、交集的概念和运算,属于基础题. 12、C 【答案解析】 先写出的通项公式,再根据的产生过程,即可求得. 【题目详解】 对二项式, 其通项公式为 的展开式中的系数 是展开式中的系数与的系数之和. 令,可得的系数为; 令,可得的系数为; 故的展开式中的系数为. 故选:C. 【答案点睛】 本题考查二项展开式中某一项系数的求解,关键是对通项公式的熟练使用,属基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 先根据题意,求出的解得或,然后求出f(x)的导函数,求其单调性以及最值,在根据题意求出函数有3个不同的零点x1,x2,x3(x1<x2<x3),分情况讨论求出的取值范围. 【题目详解】 解:令t=f(x),函数有3个不同的零点, 即+m=0有两个不同的解,解之得 即或 因为的导函数 ,令,解得x>e,,解得0<x<e, 可得f(x)在(0,e)递增,在递减; f(x)的最大值为 ,且 且f(1)=0; 要使函数有3个不同的零点, (1)有两个不同的解,此时有一个解; (2)有两个不同的解,此时有一个解 当有两个不同的解,此时有一个解, 此时 ,不符合题意; 或是不符合题意; 所以只能是 解得 , 此时=-m, 此时 有两个不同的解,此时有一个解 此时 ,不符合题意; 或是不符合题意; 所以只能是解得 , 此时=, 综上:的取值范围是 故答案为 【答案点睛】 本题主要考查了函数与导函数的综合,考查到了函数的零点,导函数的应用,以及数形结合的思想、分类讨论的思想,属于综合性极强的题目,属于难题. 14、 【答案解析】 先分间隔一个与不间隔分类计数,再根据捆绑法求排列数,最后求和得结果. 【题目详解】 若“阅读文章”与“视听学习”两大学习板块相邻,则学习方法有种; 若“阅读文章”与“视听学习”两大学习板块之间间隔一个答题板块的学习方法有种; 因此共有种. 故答案为: 【答案点睛】 本题考查排列组合实际问题,考查基本分析求解能力,属基础题. 15、 【答案解析】 在圆上其他位置任取一点B,设圆半径为R, 其中满足条件AB弦长介于与之间的弧长为 •2πR, 则AB弦的长度大于等于半径长度的概率P==; 故答案为:. 16、1 【答案解析】 根据二项式定理求出,然后再由二项式定理或多项式的乘法法则结合组合的知识求得系数. 【题目详解】 由题意,. ∴的展开式中的系数为. 故答案为:1. 【答案点睛】 本题考查二项式定理,掌握二项式定理的应用是解题关键. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)当时,在上增;当时,在

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开