温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
吉林省
2023
学年
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若,则“”是 “”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
2.定义,已知函数,,则函数的最小值为( )
A. B. C. D.
3.已知集合,集合,若,则( )
A. B. C. D.
4.设向量,满足,,,则的取值范围是
A. B.
C. D.
5.若集合,,则( )
A. B. C. D.
6.已知函数,若则( )
A.f(a)<f(b) <f(c) B.f(b) <f(c) <f(a)
C.f(a) <f(c) <f(b) D.f(c) <f(b) <f(a)
7.设,命题“存在,使方程有实根”的否定是( )
A.任意,使方程无实根
B.任意,使方程有实根
C.存在,使方程无实根
D.存在,使方程有实根
8.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是( )
A. B. C. D.
9.双曲线的右焦点为,过点且与轴垂直的直线交两渐近线于两点,与双曲线的其中一个交点为,若,且,则该双曲线的离心率为( )
A. B. C. D.
10.抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为( )
A. B. C. D.
11.已知点在双曲线上,则该双曲线的离心率为( )
A. B. C. D.
12.下列命题为真命题的个数是( )(其中,为无理数)
①;②;③.
A.0 B.1 C.2 D.3
二、填空题:本题共4小题,每小题5分,共20分。
13.已知,满足不等式组,则的取值范围为________.
14.已知,则______,______.
15.已知全集,集合,则______.
16.已知,则__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在中,角的对边分别为,且.
(1)求角的大小;
(2)已知外接圆半径,求的周长.
18.(12分)某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司年至年的年利润关于年份代号的统计数据如下表(已知该公司的年利润与年份代号线性相关).
年份
年份代号
年利润(单位:亿元)
(Ⅰ)求关于的线性回归方程,并预测该公司年(年份代号记为)的年利润;
(Ⅱ)当统计表中某年年利润的实际值大于由(Ⅰ)中线性回归方程计算出该年利润的估计值时,称该年为级利润年,否则称为级利润年.将(Ⅰ)中预测的该公司年的年利润视作该年利润的实际值,现从年至年这年中随机抽取年,求恰有年为级利润年的概率.
参考公式:,.
19.(12分)已知数列的各项均为正数,且满足.
(1)求,及的通项公式;
(2)求数列的前项和.
20.(12分)在中,角的对边分别为,且满足.
(Ⅰ)求角的大小;
(Ⅱ)若的面积为,,求和的值.
21.(12分)已知函数,其中.
(Ⅰ)若,求函数的单调区间;
(Ⅱ)设.若在上恒成立,求实数的最大值.
22.(10分)已知函数,.
(1)若不等式的解集为,求的值.
(2)若当时,,求的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.
【题目详解】
当时,,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.
【答案点睛】
易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果.
2、A
【答案解析】
根据分段函数的定义得,,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.
【题目详解】
依题意得,,则,
(当且仅当,即时“”成立.此时,,,的最小值为,
故选:A.
【答案点睛】
本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.
3、A
【答案解析】
根据或,验证交集后求得的值.
【题目详解】
因为,所以或.当时,,不符合题意,当时,.故选A.
【答案点睛】
本小题主要考查集合的交集概念及运算,属于基础题.
4、B
【答案解析】
由模长公式求解即可.
【题目详解】
,
当时取等号,所以本题答案为B.
【答案点睛】
本题考查向量的数量积,考查模长公式,准确计算是关键,是基础题.
5、A
【答案解析】
用转化的思想求出中不等式的解集,再利用并集的定义求解即可.
【题目详解】
解:由集合,解得,
则
故选:.
【答案点睛】
本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键.属于基础题.
6、C
【答案解析】
利用导数求得在上递增,结合与图象,判断出的大小关系,由此比较出的大小关系.
【题目详解】
因为,所以在上单调递增;
在同一坐标系中作与图象,
,可得,故.
故选:C
【答案点睛】
本小题主要考查利用导数研究函数的单调性,考查利用函数的单调性比较大小,考查数形结合的数学思想方法,属于中档题.
7、A
【答案解析】
只需将“存在”改成“任意”,有实根改成无实根即可.
【题目详解】
由特称命题的否定是全称命题,知“存在,使方程有实根”的否定是
“任意,使方程无实根”.
故选:A
【答案点睛】
本题考查含有一个量词的命题的否定,此类问题要注意在两个方面作出变化:1.量词,2.结论,是一道基础题.
8、C
【答案解析】
首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.
【题目详解】
设公差为d,由题知,
,
解得,,
所以数列为,
故.
故选:C.
【答案点睛】
本题主要考查了等差数列的基本量的求解,属于基础题.
9、D
【答案解析】
根据已知得本题首先求出直线与双曲线渐近线的交点,再利用,求出点,因为点在双曲线上,及,代入整理及得,又已知,即可求出离心率.
【题目详解】
由题意可知,代入得:,
代入双曲线方程整理得:,又因为,即可得到,
故选:D.
【答案点睛】
本题主要考查的是双曲线的简单几何性质和向量的坐标运算,离心率问题关键寻求关于,,的方程或不等式,由此计算双曲线的离心率或范围,属于中档题.
10、A
【答案解析】
设,,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.
【题目详解】
解:设,∴,
又,两式相减得:,
∴,
∴,
∴直线的斜率为2,又∴过点,
∴直线的方程为:,即,
故选:A.
【答案点睛】
本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.
11、C
【答案解析】
将点A坐标代入双曲线方程即可求出双曲线的实轴长和虚轴长,进而求得离心率.
【题目详解】
将,代入方程得,而双曲线的半实轴,所以,得离心率,故选C.
【答案点睛】
此题考查双曲线的标准方程和离心率的概念,属于基础题.
12、C
【答案解析】
对于①中,根据指数幂的运算性质和不等式的性质,可判定值正确的;对于②中,构造新函数,利用导数得到函数为单调递增函数,进而得到,即可判定是错误的;对于③中,构造新函数,利用导数求得函数的最大值为,进而得到,即可判定是正确的.
【题目详解】
由题意,对于①中,由,可得,根据不等式的性质,可得成立,所以是正确的;
对于②中,设函数,则,所以函数为单调递增函数,
因为,则
又由,所以,即,所以②不正确;
对于③中,设函数,则,
当时,,函数单调递增,
当时,,函数单调递减,
所以当时,函数取得最大值,最大值为,
所以,即,即,所以是正确的.
故选:C.
【答案点睛】
本题主要考查了不等式的性质,以及导数在函数中的综合应用,其中解答中根据题意,合理构造新函数,利用导数求得函数的单调性和最值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
画出不等式组表示的平面区域如下图中阴影部分所示,易知在点处取得最小值,即,所以由图可知的取值范围为.
14、
【答案解析】
利用两角和的正切公式结合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式结合弦化切思想求出和的值,进而利用两角差的余弦公式求出的值.
【题目详解】
,
,
,
.
故答案为:;.
【答案点睛】
本题主要考查三角函数值的计算,考查两角和的正切公式、两角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的应用,难度不大.
15、
【答案解析】
根据题意可得出,然后进行补集的运算即可.
【题目详解】
根据题意知,,
,,
.
故答案为:.
【答案点睛】
本题考查列举法的定义、全集的定义、补集的运算,考查计算能力,属于基础题.
16、
【答案解析】
解:由题意可知: .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)(2)3+3
【答案解析】
(1)利用余弦的二倍角公式和同角三角函数关系式化简整理并结合范围0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周长.
【题目详解】
(1)
,
即
又
(2) ,
∵,
∴由余弦定理得 a2=b2+c2﹣2bccosA,
∴,
∵c>0,所以得c=2,
∴周长a+b+c=3+3.
【答案点睛】
本题考查三角函数恒等变换的应用,正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于中档题.
18、(Ⅰ),该公司年年利润的预测值为亿元;(Ⅱ).
【答案解析】
(Ⅰ)求出和的值,将表格中的数据代入最小二乘法公式,求得和的值,进而可求得关于的线性回归方程,然后将代入回归直线方程,可得出该公司年年利润的估计值;
(Ⅱ)利用(Ⅰ)中的回归直线方程计算出从年至年这年被评为级利润年的年数,然后利用组合计数原理结合古典概型的概率可得出所求事件的概率.
【题目详解】
(Ⅰ)根据表中数据,计算可得,,,
又,,
,关于的线性回归方程为.
将代入回归方程得(亿元),
该公司年的年利润的预测值为亿元.
(Ⅱ)由(Ⅰ)可知年至年的年利润的估计值分别为、、、、、、、(单位:亿元),其中实际利润大于相应估计值的有年.
故这年中被评为级利润年的有年,评为级利润年的有年.
记“从年至年这年的年利润中随机抽取