温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
北京师范大学
附属
实验
中学
2023
学年
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设为虚数单位,则复数在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.已知复数为虚数单位) ,则z 的虚部为( )
A.2 B. C.4 D.
3.下列函数中,既是奇函数,又在上是增函数的是( ).
A. B.
C. D.
4.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是( )
A. B. C. D.
5.已知向量,,则与共线的单位向量为( )
A. B.
C.或 D.或
6.下列命题为真命题的个数是( )(其中,为无理数)
①;②;③.
A.0 B.1 C.2 D.3
7.设i是虚数单位,若复数是纯虚数,则a的值为( )
A. B.3 C.1 D.
8.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”.如图就是一重卦.在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是( )
A. B. C. D.
9.已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为、、元).甲、乙租车费用为元的概率分别是、,甲、乙租车费用为元的概率分别是、,则甲、乙两人所扣租车费用相同的概率为( )
A. B. C. D.
10.已知双曲线的一条渐近线方程是,则双曲线的离心率为( )
A. B. C. D.
11.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则的值为( )
A.2 B.3 C.4 D.
12.已知角的终边经过点,则
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知不等式组所表示的平面区域为,则区域的外接圆的面积为______.
14.若实数满足不等式组,则的最小值是___
15.已知a,b均为正数,且,的最小值为________.
16.经过椭圆中心的直线与椭圆相交于、两点(点在第一象限),过点作轴的垂线,垂足为点.设直线与椭圆的另一个交点为.则的值是________________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设函数.
(1)求不等式的解集;
(2)若的最小值为,且,求的最小值.
18.(12分)已知数列满足:对任意,都有.
(1)若,求的值;
(2)若是等比数列,求的通项公式;
(3)设,,求证:若成等差数列,则也成等差数列.
19.(12分)如图,在直三棱柱中,分别是中点,且,.
求证:平面;
求点到平面的距离.
20.(12分)已知圆上有一动点,点的坐标为,四边形为平行四边形,线段的垂直平分线交于点.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)过点作直线与曲线交于两点,点的坐标为,直线与轴分别交于两点,求证:线段的中点为定点,并求出面积的最大值.
21.(12分)在中,角的对边分别为,若.
(1)求角的大小;
(2)若,为外一点,,求四边形面积的最大值.
22.(10分)已知函数,.
(1)若曲线在点处的切线方程为,求,;
(2)当时,,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
利用复数的除法运算化简,求得对应的坐标,由此判断对应点所在象限.
【题目详解】
,对应的点的坐标为,位于第一象限.
故选:A.
【答案点睛】
本小题主要考查复数除法运算,考查复数对应点所在象限,属于基础题.
2、A
【答案解析】
对复数进行乘法运算,并计算得到,从而得到虚部为2.
【题目详解】
因为,所以z 的虚部为2.
【答案点睛】
本题考查复数的四则运算及虚部的概念,计算过程要注意.
3、B
【答案解析】
奇函数满足定义域关于原点对称且,在上即可.
【题目详解】
A:因为定义域为,所以不可能时奇函数,错误;
B:定义域关于原点对称,且
满足奇函数,又,所以在上,正确;
C:定义域关于原点对称,且
满足奇函数,,在上,因为,所以在上不是增函数,错误;
D:定义域关于原点对称,且,
满足奇函数,在上很明显存在变号零点,所以在上不是增函数,错误;
故选:B
【答案点睛】
此题考查判断函数奇偶性和单调性,注意奇偶性的前提定义域关于原点对称,属于简单题目.
4、B
【答案解析】
由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种,由古典概型的概率公式即得解.
【题目详解】
由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种
由古典概型,取的3个球的编号的中位数恰好为5的概率为:
故选:B
【答案点睛】
本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.
5、D
【答案解析】
根据题意得,设与共线的单位向量为,利用向量共线和单位向量模为1,列式求出即可得出答案.
【题目详解】
因为,,则,
所以,
设与共线的单位向量为,
则,
解得 或
所以与共线的单位向量为或.
故选:D.
【答案点睛】
本题考查向量的坐标运算以及共线定理和单位向量的定义.
6、C
【答案解析】
对于①中,根据指数幂的运算性质和不等式的性质,可判定值正确的;对于②中,构造新函数,利用导数得到函数为单调递增函数,进而得到,即可判定是错误的;对于③中,构造新函数,利用导数求得函数的最大值为,进而得到,即可判定是正确的.
【题目详解】
由题意,对于①中,由,可得,根据不等式的性质,可得成立,所以是正确的;
对于②中,设函数,则,所以函数为单调递增函数,
因为,则
又由,所以,即,所以②不正确;
对于③中,设函数,则,
当时,,函数单调递增,
当时,,函数单调递减,
所以当时,函数取得最大值,最大值为,
所以,即,即,所以是正确的.
故选:C.
【答案点睛】
本题主要考查了不等式的性质,以及导数在函数中的综合应用,其中解答中根据题意,合理构造新函数,利用导数求得函数的单调性和最值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.
7、D
【答案解析】
整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.
【题目详解】
由题,,
因为纯虚数,所以,则,
故选:D
【答案点睛】
本题考查已知复数的类型求参数范围,考查复数的除法运算.
8、C
【答案解析】
利用组合的方法求所求的事件的对立事件,即该重卦没有阳爻或只有1个阳爻的概率,再根据两对立事件的概率和为1求解即可.
【题目详解】
设“该重卦至少有2个阳爻”为事件.所有“重卦”共有种;“该重卦至少有2个阳爻”的对立事件是“该重卦没有阳爻或只有1个阳爻”,其中,没有阳爻(即6个全部是阴爻)的情况有1种,只有1个阳爻的情况有种,故,所以该重卦至少有2个阳爻的概率是.
故选:C
【答案点睛】
本题主要考查了对立事件概率和为1的方法求解事件概率的方法.属于基础题.
9、B
【答案解析】
甲、乙两人所扣租车费用相同即同为1元,或同为2元,或同为3元,由独立事件的概率公式计算即得.
【题目详解】
由题意甲、乙租车费用为3元的概率分别是,
∴甲、乙两人所扣租车费用相同的概率为
.
故选:B.
【答案点睛】
本题考查独立性事件的概率.掌握独立事件的概率乘法公式是解题基础.
10、D
【答案解析】
双曲线的渐近线方程是,所以,即 , ,即 ,,故选D.
11、B
【答案解析】
因为将函数(,)的图象向右平移个单位长度后得到函数的图象,可得,结合已知,即可求得答案.
【题目详解】
将函数(,)的图象向右平移个单位长度后得到函数的图象
,
又和的图象都关于对称,
由,
得,,
即,
又,
.
故选:B.
【答案点睛】
本题主要考查了三角函数图象平移和根据图象对称求参数,解题关键是掌握三角函数图象平移的解法和正弦函数图象的特征,考查了分析能力和计算能力,属于基础题.
12、D
【答案解析】
因为角的终边经过点,所以,则,
即.故选D.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
先作可行域,根据解三角形得外接圆半径,最后根据圆面积公式得结果.
【题目详解】
由题意作出区域,如图中阴影部分所示,
易知,故 ,又,设的外接圆的半径为,则由正弦定理得,即,故所求外接圆的面积为.
【答案点睛】
线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离、可行域面积、可行域外接圆等等,最后结合图形确定目标函数最值取法、值域范围.
14、-1
【答案解析】
作出可行域,如图:
由得,由图可知当直线经过A点时目标函数取得最小值,A(1,0)
所以-1
故答案为-1
15、
【答案解析】
本题首先可以根据将化简为,然后根据基本不等式即可求出最小值.
【题目详解】
因为,
所以,
当且仅当,即、时取等号,
故答案为:.
【答案点睛】
本题考查根据基本不等式求最值,基本不等式公式为,在使用基本不等式的时候要注意“”成立的情况,考查化归与转化思想,是中档题.
16、
【答案解析】
作出图形,设点,则、,设点,利用点差法得出,利用斜率公式得出,进而可得出,可得出,由此可求得的值.
【题目详解】
设点,则、,设点,
则,两式相减得,即,
即,
由斜率公式得,,,故,
因此,.
故答案为:.
【答案点睛】
本题考查椭圆中角的余弦值的求解,涉及了点差法与斜率公式的应用,考查计算能力,属于中等题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)或(2)最小值为.
【答案解析】
(1)讨论,,三种情况,分别计算得到答案.
(2)计算得到,再利用均值不等式计算得到答案.
【题目详解】
(1)
当时,由,解得;
当时,由,解得;
当时,由,解得.
所以所求不等式的解集为或.
(2)根据函数图像知:当时,,所以.
因为
,
由,可知,
所以,
当且仅当,,时,等号成立.
所以的最小值为.
【答案点睛】
本题考查了解绝对值不等式,函数最值,均值不等式,意在考查学生对于不等式,函数知识的综合应用.
18、(1)3;(2);(3)见解析.
【答案解析】
(1)依据下标的关系,有,,两式相加,即可求出;(2)依据等比数列的通项公式知,求出首项和公比即可。利用关系式,列出方程,可以解出首项和公比;(3)利用等差数列的定义,即可证出。
【题目详解】
(1)因为对任意,都有,所以,,两式相加,,解得;
(2)设等比数列的首项为,公比为,因为对任意,都有,
所以有,解得,又 ,
即有,化简得,,即,
或,因为,化简得,所以
故。
(3)因为对任意,都有,所以有
,成等差数列,设公差为,