分享
南阳市重点中学2023学年高考全国统考预测密卷数学试卷(含解析).doc
下载文档

ID:21128

大小:1.96MB

页数:20页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
南阳市 重点中学 2023 学年 高考 全国 统考 预测 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下: 小明说:“鸿福齐天”是我制作的; 小红说:“国富民强”不是小明制作的,就是我制作的; 小金说:“兴国之路”不是我制作的, 若三人的说法有且仅有一人是正确的,则“鸿福齐天”的制作者是( ) A.小明 B.小红 C.小金 D.小金或小明 2.执行如图所示的程序框图,若输入,,则输出的值为( ) A.0 B.1 C. D. 3.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是( ) A. B. C. D. 4.已知底面为边长为的正方形,侧棱长为的直四棱柱中,是上底面上的动点.给出以下四个结论中,正确的个数是( ) ①与点距离为的点形成一条曲线,则该曲线的长度是; ②若面,则与面所成角的正切值取值范围是; ③若,则在该四棱柱六个面上的正投影长度之和的最大值为. A. B. C. D. 5.已知正四面体的内切球体积为v,外接球的体积为V,则( ) A.4 B.8 C.9 D.27 6.设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为( ) A. B.2 C. D. 7.已知集合,,则集合的真子集的个数是( ) A.8 B.7 C.4 D.3 8.若集合,,则 A. B. C. D. 9.已知集合,,若,则的最小值为( ) A.1 B.2 C.3 D.4 10.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数﹔最后根据统计数来估计的值.若,则的估计值为( ) A. B. C. D. 11.若复数满足,则( ) A. B. C.2 D. 12.已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知函数的部分图象如图所示,则的值为____________. 14.已知函数()在区间上的值小于0恒成立,则的取值范围是________. 15.已知数列的前项和为,且满足,则______ 16.已知角的终边过点,则______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知两数. (1)当时,求函数的极值点; (2)当时,若恒成立,求的最大值. 18.(12分)如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点. (1)求异面直线AP,BM所成角的余弦值; (2)点N在线段AD上,且AN=λ,若直线MN与平面PBC所成角的正弦值为,求λ的值. 19.(12分)在多面体中,四边形是正方形,平面,,,为的中点. (1)求证:; (2)求平面与平面所成角的正弦值. 20.(12分)设椭圆的左右焦点分别为,离心率,右准线为,是上的两个动点,. (Ⅰ)若,求的值; (Ⅱ)证明:当取最小值时,与共线. 21.(12分)已知函数 (1)当时,证明,在恒成立; (2)若在处取得极大值,求的取值范围. 22.(10分)已知数列满足,. (1)求数列的通项公式; (2)若,求数列的前项和. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 将三个人制作的所有情况列举出来,再一一论证. 【题目详解】 依题意,三个人制作的所有情况如下所示: 1 2 3 4 5 6 鸿福齐天 小明 小明 小红 小红 小金 小金 国富民强 小红 小金 小金 小明 小红 小明 兴国之路 小金 小红 小明 小金 小明 小红 若小明的说法正确,则均不满足;若小红的说法正确,则4满足;若小金的说法正确,则3满足.故“鸿福齐天”的制作者是小红, 故选:B. 【答案点睛】 本题考查推理与证明,还考查推理论证能力以及分类讨论思想,属于基础题. 2、A 【答案解析】 根据输入的值大小关系,代入程序框图即可求解. 【题目详解】 输入,, 因为,所以由程序框图知, 输出的值为. 故选:A 【答案点睛】 本题考查了对数式大小比较,条件程序框图的简单应用,属于基础题. 3、D 【答案解析】 利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项. 【题目详解】 因为,, 故. 又,故. 因为当时,函数是单调递减函数, 所以. 因为为偶函数,故, 所以. 故选:D. 【答案点睛】 本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题. 4、C 【答案解析】 ①与点距离为的点形成以为圆心,半径为的圆弧,利用弧长公式,可得结论;②当在(或时,与面所成角(或的正切值为最小,当在时,与面所成角的正切值为最大,可得正切值取值范围是;③设,,,则,即,可得在前后、左右、上下面上的正投影长,即可求出六个面上的正投影长度之和. 【题目详解】 如图: ①错误, 因为 ,与点距离为的点形成以为圆心,半径为的圆弧,长度为; ②正确,因为面面,所以点必须在面对角线上运动,当在(或)时,与面所成角(或)的正切值为最小(为下底面面对角线的交点),当在时,与面所成角的正切值为最大,所以正切值取值范围是; ③正确,设,则,即,在前后、左右、上下面上的正投影长分别为,,,所以六个面上的正投影长度之,当且仅当在时取等号. 故选:. 【答案点睛】 本题以命题的真假判断为载体,考查了轨迹问题、线面角、正投影等知识点,综合性强,属于难题. 5、D 【答案解析】 设正四面体的棱长为,取的中点为,连接,作正四面体的高为,首先求出正四面体的体积,再利用等体法求出内切球的半径,在中,根据勾股定理求出外接球的半径,利用球的体积公式即可求解. 【题目详解】 设正四面体的棱长为,取的中点为,连接, 作正四面体的高为, 则, , , 设内切球的半径为,内切球的球心为, 则, 解得:; 设外接球的半径为,外接球的球心为, 则或,, 在中,由勾股定理得: , ,解得, , 故选:D 【答案点睛】 本题主要考查了多面体的内切球、外接球问题,考查了椎体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题. 6、A 【答案解析】 由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率. 【题目详解】 由题意∵,∴由双曲线定义得,从而得,, 在中,由余弦定理得,化简得. 故选:A. 【答案点睛】 本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式. 7、D 【答案解析】 转化条件得,利用元素个数为n的集合真子集个数为个即可得解. 【题目详解】 由题意得, ,集合的真子集的个数为个. 故选:D. 【答案点睛】 本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题. 8、C 【答案解析】 解一元次二次不等式得或,利用集合的交集运算求得. 【题目详解】 因为或,,所以,故选C. 【答案点睛】 本题考查集合的交运算,属于容易题. 9、B 【答案解析】 解出,分别代入选项中 的值进行验证. 【题目详解】 解:,.当 时,,此时不成立. 当 时,,此时成立,符合题意. 故选:B. 【答案点睛】 本题考查了不等式的解法,考查了集合的关系. 10、B 【答案解析】 先利用几何概型的概率计算公式算出,能与构成锐角三角形三边长的概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出. 【题目详解】 因为,都是区间上的均匀随机数,所以有,,若,能与构成锐角三角形三边长, 则,由几何概型的概率计算公式知, 所以. 故选:B. 【答案点睛】 本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题. 11、D 【答案解析】 把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算. 【题目详解】 解:由题意知,, , ∴, 故选:D. 【答案点睛】 本题考查复数代数形式的乘除运算,考查复数模的求法. 12、D 【答案解析】 由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公式,求出e. 【题目详解】 由题意得,, ,. 故选:D. 【答案点睛】 本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 由图可得的周期、振幅,即可得,再将代入可解得,进一步求得解析式及. 【题目详解】 由图可得,,所以,即, 又,即,, 又,故,所以,. 故答案为: 【答案点睛】 本题考查由图象求解析式及函数值,考查学生识图、计算等能力,是一道中档题. 14、 【答案解析】 首先根据的取值范围,求得的取值范围,由此求得函数的值域,结合区间上的值小于0恒成立列不等式组,解不等式组求得的取值范围. 【题目详解】 由于,所以, 由于区间上的值小于0恒成立, 所以(). 所以, 由于,所以, 由于,所以令得. 所以的取值范围是. 故答案为: 【答案点睛】 本小题主要考查三角函数值域的求法,考查三角函数值恒小于零的问题的求解,考查化归与转化的数学思想方法,属于中档题. 15、 【答案解析】 对题目所给等式进行赋值,由此求得的表达式,判断出数列是等比数列,由此求得的值. 【题目详解】 解:,可得时,, 时,,又, 两式相减可得,即,上式对也成立,可得数列是首项为1,公比为的等比数列,可得. 【答案点睛】 本小题主要考查已知求,考查等比数列前项和公式,属于中档题. 16、 【答案解析】 由题意利用任意角的三角函数的定义,两角和差正弦公式,求得的值. 【题目详解】 解:∵角的终边过点, ∴,, ∴, 故答案为:. 【答案点睛】 本题主要考查任意角的三角函数的定义,两角和差正弦公式,属于基础题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)唯一的极大值点1,无极小

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开