温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
中考
数学
必考
考点
专题
21
菱形
解析
专题21 菱形
专题知识回顾
1.菱形的定义 :有一组邻边相等的平行四边形叫做菱形。
2.菱形的性质:(1)菱形的四条边都相等;(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
3.菱形的判定定理:
(1)一组邻边相等的平行四边形是菱形; (2)对角线互相垂直的平行四边形是菱形;
(3)四条边相等的四边形是菱形。
4.菱形的面积:S菱形=底边长×高=两条对角线乘积的一半
专题典型题考法及解析
【例题1】(2023年内蒙古赤峰)如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是( )
A.2.5 B.3 C.4 D.5
【答案】A
【解析】∵四边形ABCD为菱形,
∴CD=BC=204=5,且O为BD的中点,
∵E为CD的中点,
∴OE为△BCD的中位线,
∴OE=12CB=2.5
【例题2】(2023年广西梧州)如图,在菱形中,,,将菱形绕点逆时针方向旋转,对应得到菱形,点在上,与交于点,则的长是 .
【答案】
【解析】连接交于,如图所示:
四边形是菱形,
,,,,,
,
,
,
由旋转的性质得:,,
,
四边形是菱形,,
,
,,
,,
。
专题典型训练题
一、选择题
1.(2023年四川泸州)一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为( )
A.8 B.12 C.16 D.32
【答案】
【解析】如图所示:
∵四边形ABCD是菱形,
∴AO=CO=12AC,DO=BO=12BD,AC⊥BD,
∵面积为28,
∴12AC•BD=2OD•AO=28 ①
∵菱形的边长为6,
∴OD2+OA2=36 ②,
由①②两式可得:(OD+AO)2=OD2+OA2+2OD•AO=36+28=64.
∴OD+AO=8,
∴2(OD+AO)=16,即该菱形的两条对角线的长度之和为16.
2.(2023年•四川省绵阳市)如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为( )
A. B. C. D.
【答案】D
【解析】过点E作EF⊥x轴于点F,
∵四边形OABC为菱形,∠AOC=60°,
∴=30°,∠FAE=60°,
∵A(4,0),
∴OA=4,
∴=2,
∴,EF===,
∴OF=AO-AF=4-1=3,
∴.
3.(2023年•四川省广安市)如图,在边长为的菱形中,,过点作于点,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G则CG等于( )
A. B.1 C. D. .
【答案】A
【解析】因为∠B=30°,AB=,AE⊥BC,
所以BE=,所以EC=-,
则CF=3-,
又因为CG∥AB,
所以,
所以CG=.
4.(2023年四川省雅安市)如图,在四边形ABCD中,AB=CD,AC、BD是对角线 ,E、F、G、H分别是AD、BD、BC、AC的中点,连接EF、FG、GH、HE,则四边形EFGH的形状是( )
A.平行四边形 B.矩形 C.菱形 D.正方形
【答案】C
【解析】由点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,根据三角形中位线性质,得EF=GH=AB,EH=FG=CD,又由AB=CD,得EF=FG=GH=EH时,四边形EFGH是菱形.
∵点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,∴EF=GH=AB,EH=FG=CD,∵AB=CD,∴EF=FG=GH=EH时,四边形EFGH是菱形,故选C.
5. (2023年·贵州安顺)如图,在菱形ABCD中,按以下步骤作图:
①分别以点C和点D为圆心,大于CD的长为半径作弧,两弧相交于M、N两点;
②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE.
则下列说法错误的是( )
A.∠ABC=60° B.S△ABE=2S△ADE
C.若AB=4,则BE=4 D.sin∠CBE=
【答案】C
【解析】由作法得AE垂直平分CD,即CE=DE,AE⊥CD,
∵四边形ABCD为菱形,
∴AD=CD=2DE,AB∥DE,
在Rt△ADE中,cosD==,
∴∠D=60°,
∴∠ABC=60°,所以A选项的结论正确;
∵S△ABE=AB•AE,S△ADE=DE•AE,
而AB=2DE,
∴S△ABE=2S△ADE,所以B选项的结论正确;
若AB=4,则DE=2,
∴AE=2,
在Rt△ABE中,BE==2,所以C选项的结论错误;
作EH⊥BC交BC的延长线于H,如图,
设AB=4a,则CE=2a,BC=4a,BE=2a,
在△CHE中,∠ECH=∠D=60°,
∴CH=a,EH=a,
∴sin∠CBE===,所以D选项的结论正确.
故选:C.
6.(2023年·贵州贵阳)如图所示,菱形ABCD的周长是4cm,∠ABC=60°,那么这个菱形的对角线AC的长是( )
A.1cm B.2 cm C.3cm D.4cm
【答案】A
【解析】由于四边形ABCD是菱形,AC是对角线,根据∠ABC=60°,而AB=BC,易证△BAC是等边三角形,从而可求AC的长.
∵四边形ABCD是菱形,AC是对角线,
∴AB=BC=CD=AD,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴AB=BC=AC,
∵菱形ABCD的周长是4cm,
∴AB=BC=AC=1cm.
7.(2023年•贵州省铜仁市)如图,四边形ABCD为菱形,AB=2,∠DAB=60°,点E、F分别在边DC、BC上,且CE=CD,CF=CB,则S△CEF=( )
A. B. C. D.
【答案】D.
【解答】∵四边形ABCD为菱形,AB=2,∠DAB=60°
∴AB=BC=CD=2,∠DCB=60°
∵CE=CD,CF=CB
∴CE=CF=
∴△CEF为等边三角形
∴S△CEF==
8.(2023年•河北省)如图,菱形ABCD中,∠D=150°,则∠1=( )
A.30° B.25° C.20° D.15°
【答案】D.
【解答】∵四边形ABCD是菱形,∠D=150°,
∴AB∥CD,∠BAD=2∠1,
∴∠BAD+∠D=180°,
∴∠BAD=180°﹣150°=30°,
∴∠1=15°
二、填空题
9.(2023年广西北部湾)如图,在菱形ABCD中,对角线AC,BD交与点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH= .
【答案】.
【解析】本题考查了菱形的性质、勾股定理以及菱形面积公式,根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果.
∵四边形ABCD是菱形,
∴BO=DO=4,AO=CO,AC⊥BD,
∴BD=8.
∵S菱形ABCD=AC×BD=24,∴AC=6,∴OC=AC=3,
∴BC==5,
∵S菱形ABCD=BC×AH=24,∴AH=.
10.(2023年内蒙古通辽)如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是 .
【答案】﹣1
【解析】过点M作MH⊥CD交CD延长线于点H,连接CM,
∵AM=AD,AD=CD=3
∴AM=1,MD=2
∵CD∥AB,
∴∠HDM=∠A=60°
∴HD=MD=1,HM=HD=
∴CH=4
∴MC==
∵将△AMN沿MN所在直线翻折得到△A′MN,
∴AM=A'M=1,
∴点A'在以M为圆心,AM为半径的圆上,
∴当点A'在线段MC上时,A'C长度有最小值
∴A'C长度的最小值=MC﹣MA'=﹣1
11.(2023年湖南常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四
边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边
形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N
的坐标分别为(0,1),(0,﹣1),P是二次函数y=x2的图象上在第一象限内的任意一
点,PQ垂直直线y=﹣1于点Q,则四边形PMNQ是广义菱形.其中正确的是 .(填
序号)
【答案】①②④.
【解析】①根据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,①正确;
②平行四边形有一组对边平行,没有一组邻边相等,②错误;
③由给出条件无法得到一组对边平行,③错误;
④设点P(m,m2),则Q(m,﹣1),
∴MP==,PQ=+1,
∵点P在第一象限,
∴m>0,
∴MP=+1,
∴MP=PQ,
又∵MN∥PQ,
∴四边形PMNQ是广义菱形.
④正确;
故答案为①②④.
12.(2023年湖北十堰)如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为 .
【答案】24
【解析】∵四边形ABCD是菱形,
∴AB=BC=CD=AD,BO=DO,
∵点E是BC的中点,
∴OE是△BCD的中位线,
∴CD=2OE=2×3=6,
∴菱形ABCD的周长=4×6=24
13.(2023年北京市) 把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为_______.
【答案】12
【解析】设图1中小直角三角形的两直角边长分别为a,b (a>b);
则由图2和图3列得方程组,由加减消元法得,
∴菱形的面积.故填12.
14.(2023年辽宁抚顺)如图,菱形ABCD的边长为4cm,∠A=60°,BD是以点A为圆心,AB长为半径的弧,CD是以点B为圆心,BC长为半径的弧,则阴影部分的面积为 cm2.
【答案】4.
【解析】连接BD,判断出△ABD是等边三角形,根据等边三角形的性质可得∠ABD=60°,再求出∠CBD=60°,然后求出阴影部分的面积=S△ABD,计算即可得解.
如图,连接BD,
∵四边形ABCD是菱形,
∴AB=AD,
∵∠A=60°,
∴△ABD是等边三角形,
∴∠ABD=60°,
又∵菱形的对边AD∥BC,
∴∠ABC=180°﹣60°=120°,
∴∠CBD=120°﹣60°=60°,
∴S阴影=S扇形BDC﹣(S扇形ABD﹣S△ABD),
=S△ABD,
=×4×=4cm2.
三、解答题
15.(2023年湖南岳阳)如图,在菱形ABCD中,点E、F分别为AD、CD边上的点,DE=DF,
求证:∠1=∠2.
【答案】见解析.
【解析】证明:∵四边形ABCD是菱形,
∴AD=CD,
在△ADF和△CDE中,,
∴△ADF≌△CDE(SAS),
∴∠1=∠2.
16. (2023年•海南省)如图,在边长为l的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.
(1)求证:△PDE≌△QCE;
(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,
①求证:四边形AFEP是平行四边形;
②请判断四边形AFEP是否为菱形,并说明理由.
【解析】(1)由四边形ABCD是正方形知∠D=∠ECQ=90°,由E是CD的中点知DE=CE,结合∠DEP=∠