温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
北京市
西城区
第十五
中学
2023
学年
高考
冲刺
押题
最后
一卷
数学试卷
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,,,若,则( )
A. B. C. D.
2.若(1+2ai)i=1-bi,其中a,b∈R,则|a+bi|=( ).
A. B. C. D.5
3.已知a>0,b>0,a+b =1,若 α=,则的最小值是( )
A.3 B.4 C.5 D.6
4.已知的部分图象如图所示,则的表达式是( )
A. B.
C. D.
5.若函数在处取得极值2,则( )
A.-3 B.3 C.-2 D.2
6.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为
A. B. C. D.
7.已知函数,,且在上是单调函数,则下列说法正确的是( )
A. B.
C.函数在上单调递减 D.函数的图像关于点对称
8.若不等式对恒成立,则实数的取值范围是( )
A. B. C. D.
9.已知变量的几组取值如下表:
1
2
3
4
7
若与线性相关,且,则实数( )
A. B. C. D.
10.在中,为边上的中线,为的中点,且,,则( )
A. B. C. D.
11.已知复数满足(是虚数单位),则=( )
A. B. C. D.
12.设双曲线(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是 ( )
A.
B.
C.
D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量,,若满足,且方向相同,则__________.
14.在平面直角坐标系中,点P在直线上,过点P作圆C:的一条切线,切点为T.若,则的长是______.
15.若向量与向量垂直,则______.
16.已知,为正实数,且,则的最小值为________________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设椭圆:的左、右焦点分别为,,下顶点为,椭圆的离心率是,的面积是.
(1)求椭圆的标准方程.
(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.
18.(12分)为了实现中华民族伟大复兴之梦,把我国建设成为富强民主文明和谐美丽的社会主义现代化强国,党和国家为劳动者开拓了宽广的创造性劳动的舞台.借此“东风”,某大型现代化农场在种植某种大棚有机无公害的蔬菜时,为创造更大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间和降低夜间温度两种不同方案.为比较两种方案下产量的区别,该农场选取了40间大棚(每间一亩),分成两组,每组20间进行试点.第一组采用延长光照时间的方案,第二组采用降低夜间温度的方案.同时种植该蔬菜一季,得到各间大棚产量数据信息如下图:
(1)如果你是该农场的负责人,在只考虑亩产量的情况下,请根据图中的数据信息,对于下一季大棚蔬菜的种植,说出你的决策方案并说明理由;
(2)已知种植该蔬菜每年固定的成本为6千元/亩.若采用延长光照时间的方案,光照设备每年的成本为0.22千元/亩;若采用夜间降温的方案,降温设备的每年成本为0.2千元/亩.已知该农场共有大棚100间(每间1亩),农场种植的该蔬菜每年产出两次,且该蔬菜市场的收购均价为1千元/千斤.根据题中所给数据,用样本估计总体,请计算在两种不同的方案下,种植该蔬菜一年的平均利润;
(3)农场根据以往该蔬菜的种植经验,认为一间大棚亩产量超过5.25千斤为增产明显.在进行夜间降温试点的20间大棚中随机抽取3间,记增产明显的大棚间数为,求的分布列及期望.
19.(12分)已知函数
(1)求函数的单调递增区间
(2)记函数的图象为曲线,设点是曲线上不同两点,如果在曲线上存在点,使得①;②曲线在点M处的切线平行于直线AB,则称函数存在“中值和谐切线”,当时,函数是否存在“中值和谐切线”请说明理由
20.(12分)已知数列,其前项和为,若对于任意,,且,都有.
(1)求证:数列是等差数列
(2)若数列满足,且等差数列的公差为,存在正整数,使得,求的最小值.
21.(12分)已知函数,且曲线在处的切线方程为.
(1)求的极值点与极值.
(2)当,时,证明:.
22.(10分)已知椭圆的离心率为,点在椭圆上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线交椭圆于两点,线段的中点在直线上,求证:线段的中垂线恒过定点.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
由平行求出参数,再由数量积的坐标运算计算.
【题目详解】
由,得,则,
,,所以.
故选:B.
【答案点睛】
本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键.
2、C
【答案解析】
试题分析:由已知,-2a+i=1-bi,根据复数相等的充要条件,有a=-,b=-1
所以|a+bi|=,选C
考点:复数的代数运算,复数相等的充要条件,复数的模
3、C
【答案解析】
根据题意,将a、b代入,利用基本不等式求出最小值即可.
【题目详解】
∵a>0,b>0,a+b=1,
∴,
当且仅当时取“=”号.
答案:C
【答案点睛】
本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.
4、D
【答案解析】
由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.
【题目详解】
由图象可得,函数的最小正周期为,.
将点代入函数的解析式得,得,
,,则,,
因此,.
故选:D.
【答案点睛】
本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.
5、A
【答案解析】
对函数求导,可得,即可求出,进而可求出答案.
【题目详解】
因为,所以,则,解得,则.
故选:A.
【答案点睛】
本题考查了函数的导数与极值,考查了学生的运算求解能力,属于基础题.
6、B
【答案解析】
推导出基本事件总数,6和28恰好在同一组包含的基本事件个数,由此能求出6和28恰好在同一组的概率.
【题目详解】
解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组2个,另一组3个,
基本事件总数,
6和28恰好在同一组包含的基本事件个数,
∴6和28恰好在同一组的概率.
故选:B.
【答案点睛】
本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.
7、B
【答案解析】
根据函数,在上是单调函数,确定 ,然后一一验证,
A.若,则,由,得,但.B.由,,确定,再求解验证.C.利用整体法根据正弦函数的单调性判断.D.计算是否为0.
【题目详解】
因为函数,在上是单调函数,
所以 ,即,所以 ,
若,则,又因为,即,解得, 而,故A错误.
由,不妨令 ,得
由,得 或
当时,,不合题意.
当时,,此时
所以,故B正确.
因为,函数,在上是单调递增,故C错误.
,故D错误.
故选:B
【答案点睛】
本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题.
8、B
【答案解析】
转化为,构造函数,利用导数研究单调性,求函数最值,即得解.
【题目详解】
由,可知.
设,则,
所以函数在上单调递增,
所以.
所以.
故的取值范围是.
故选:B
【答案点睛】
本题考查了导数在恒成立问题中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.
9、B
【答案解析】
求出,把坐标代入方程可求得.
【题目详解】
据题意,得,所以,所以.
故选:B.
【答案点睛】
本题考查线性回归直线方程,由性质线性回归直线一定过中心点可计算参数值.
10、A
【答案解析】
根据向量的线性运算可得,利用及,计算即可.
【题目详解】
因为,
所以
,
所以,
故选:A
【答案点睛】
本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.
11、A
【答案解析】
把已知等式变形,再由复数代数形式的乘除运算化简得答案.
【题目详解】
解:由,得,
.
故选.
【答案点睛】
本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.
12、A
【答案解析】
由题意,
根据双曲线的对称性知在轴上,设,则由
得:,
因为到直线的距离小于,所以
,
即,所以双曲线渐近线斜率,故选A.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由向量平行坐标表示计算.注意验证两向量方向是否相同.
【题目详解】
∵,∴,解得或,
时,满足题意,
时,,方向相反,不合题意,舍去.
∴.
故答案为:1.
【答案点睛】
本题考查向量平行的坐标运算,解题时要注意验证方向相同这个条件,否则会出错.
14、
【答案解析】
作出图像,设点,根据已知可得,,且,可解出,计算即得.
【题目详解】
如图,设,圆心坐标为,可得,
,,
,,解得,,
即的长是.
故答案为:
【答案点睛】
本题考查直线与圆的位置关系,以及求平面两点间的距离,运用了数形结合的思想.
15、0
【答案解析】
直接根据向量垂直计算得到答案.
【题目详解】
向量与向量垂直,则,故.
故答案为:.
【答案点睛】
本题考查了根据向量垂直求参数,意在考查学生的计算能力.
16、
【答案解析】
由,为正实数,且,可知,于是,可得
,再利用基本不等式即可得出结果.
【题目详解】
解:,为正实数,且,可知,
,
.
当且仅当时取等号.
的最小值为.
故答案为:.
【答案点睛】
本题考查了基本不等式的性质应用,恰当变形是解题的关键,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1); (2)证明见解析,.
【答案解析】
(1)根据离心率和的面积是得到方程组,计算得到答案.
(2)先排除斜率为0时的情况,设,,联立方程组利用韦达定理得到,,根据化简得到,代入直线方程得到答案.
【题目详解】
(1)由题意可得,解得,,则椭圆的标准方程是.
(2)当直线的斜率为0时,直线与直线关于轴对称,则直线与直线的斜率之和为零,与题设条件矛盾,故直线的斜率不为0.
设,,直线的方程为
联立,整理得
则,.
因为直线与直线的斜率之和为1,所以,
所以,
将,代入上式,整理得.
所以,即,