温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
北京市
八一
中学
2023
学年
高考
仿真
模拟
数学试卷
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知等差数列的前13项和为52,则( )
A.256 B.-256 C.32 D.-32
2.函数在上的图象大致为( )
A. B.
C. D.
3.已知复数满足:,则的共轭复数为( )
A. B. C. D.
4.复数的( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5.如图,是圆的一条直径,为半圆弧的两个三等分点,则( )
A. B. C. D.
6.若复数满足,则( )
A. B. C. D.
7.如果直线与圆相交,则点与圆C的位置关系是( )
A.点M在圆C上 B.点M在圆C外
C.点M在圆C内 D.上述三种情况都有可能
8.五名志愿者到三个不同的单位去进行帮扶,每个单位至少一人,则甲、乙两人不在同一个单位的概率为( )
A. B. C. D.
9.盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为( )
A. B. C. D.
10.下列函数中,图象关于轴对称的为( )
A. B.,
C. D.
11.若实数满足不等式组,则的最大值为( )
A. B. C.3 D.2
12.定义,已知函数,,则函数的最小值为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.命题“对任意,”的否定是 .
14.五声音阶是中国古乐基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果把这五个音阶全用上,排成一个五个音阶的音序,且要求宫、羽两音阶不相邻且在角音阶的同侧,可排成______种不同的音序.
15.在的展开式中,项的系数是__________(用数字作答).
16.已知椭圆Г:,F1、F2是椭圆Г的左、右焦点,A为椭圆Г的上顶点,延长AF2交椭圆Г于点B,若为等腰三角形,则椭圆Г的离心率为___________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知,其中.
(1)当时,设函数,求函数的极值.
(2)若函数在区间上递增,求的取值范围;
(3)证明:.
18.(12分)已知数列的前项和为,且点在函数的图像上;
(1)求数列的通项公式;
(2)设数列满足:,,求的通项公式;
(3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;
19.(12分)新高考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄在称为中老年),并把调查结果制成下表:
年龄(岁)
频数
5
15
10
10
5
5
了解
4
12
6
5
2
1
(1)分别估计中青年和中老年对新高考了解的概率;
(2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?
了解新高考
不了解新高考
总计
中青年
中老年
总计
附:.
0.050
0.010
0.001
3.841
6.635
10.828
(3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.
20.(12分)已知函数.
(1)当时,求函数在处的切线方程;
(2)若函数没有零点,求实数的取值范围.
21.(12分)在平面直角坐标系中,已知抛物线的焦点为,准线为,是抛物线上上一点,且点的横坐标为,.
(1)求抛物线的方程;
(2)过点的直线与抛物线交于、两点,过点且与直线垂直的直线与准线交于点,设的中点为,若、、四点共圆,求直线的方程.
22.(10分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100 人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.
(1)估计这100人体重数据的平均值和样本方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)
(2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;
(3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
利用等差数列的求和公式及等差数列的性质可以求得结果.
【题目详解】
由,,得.选A.
【答案点睛】
本题主要考查等差数列的求和公式及等差数列的性质,等差数列的等和性应用能快速求得结果.
2、A
【答案解析】
首先判断函数的奇偶性,再根据特殊值即可利用排除法解得;
【题目详解】
解:依题意,,故函数为偶函数,图象关于轴对称,排除C;
而,排除B;,排除D.
故选:.
【答案点睛】
本题考查函数图象的识别,函数的奇偶性的应用,属于基础题.
3、B
【答案解析】
转化,为,利用复数的除法化简,即得解
【题目详解】
复数满足:
所以
故选:B
【答案点睛】
本题考查了复数的除法和复数的基本概念,考查了学生概念理解,数学运算的能力,属于基础题.
4、C
【答案解析】
所对应的点为(-1,-2)位于第三象限.
【考点定位】本题只考查了复平面的概念,属于简单题.
5、B
【答案解析】
连接、,即可得到,,再根据平面向量的数量积及运算律计算可得;
【题目详解】
解:连接、,
,是半圆弧的两个三等分点, ,且,
所以四边形为棱形,
.
故选:B
【答案点睛】
本题考查平面向量的数量积及其运算律的应用,属于基础题.
6、C
【答案解析】
化简得到,,再计算复数模得到答案.
【题目详解】
,故,
故,.
故选:.
【答案点睛】
本题考查了复数的化简,共轭复数,复数模,意在考查学生的计算能力.
7、B
【答案解析】
根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.
【题目详解】
直线与圆相交,
圆心到直线的距离,
即.
也就是点到圆的圆心的距离大于半径.
即点与圆的位置关系是点在圆外.
故选:
【答案点睛】
本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题.
8、D
【答案解析】
三个单位的人数可能为2,2,1或3,1,1,求出甲、乙两人在同一个单位的概率,利用互为对立事件的概率和为1即可解决.
【题目详解】
由题意,三个单位的人数可能为2,2,1或3,1,1;基本事件总数有
种,若为第一种情况,且甲、乙两人在同一个单位,共有种情况;若为第二
种情况,且甲、乙两人在同一个单位,共有种,故甲、乙两人在同一个单位的概率
为,故甲、乙两人不在同一个单位的概率为.
故选:D.
【答案点睛】
本题考查古典概型的概率公式的计算,涉及到排列与组合的应用,在正面情况较多时,可以先求其对立事件,即甲、乙两人在同一个单位的概率,本题有一定难度.
9、C
【答案解析】
先计算出总的基本事件的个数,再计算出两张都没获奖的个数,根据古典概型的概率,求出两张都没有奖的概率,由对立事件的概率关系,即可求解.
【题目详解】
从5张“刮刮卡”中随机取出2张,共有种情况,
2张均没有奖的情况有(种),故所求概率为.
故选:C.
【答案点睛】
本题考查古典概型的概率、对立事件的概率关系,意在考查数学建模、数学计算能力,属于基础题.
10、D
【答案解析】
图象关于轴对称的函数为偶函数,用偶函数的定义及性质对选项进行判断可解.
【题目详解】
图象关于轴对称的函数为偶函数;
A中,,,故为奇函数;
B中,的定义域为,
不关于原点对称,故为非奇非偶函数;
C中,由正弦函数性质可知,为奇函数;
D中,且,,故为偶函数.
故选:D.
【答案点睛】
本题考查判断函数奇偶性. 判断函数奇偶性的两种方法:
(1)定义法:对于函数的定义域内任意一个都有,则函数是奇函数;都有,则函数是偶函数
(2)图象法:函数是奇(偶)函数函数图象关于原点(轴)对称.
11、C
【答案解析】
作出可行域,直线目标函数对应的直线,平移该直线可得最优解.
【题目详解】
作出可行域,如图由射线,线段,射线围成的阴影部分(含边界),作直线,平移直线,当过点时,取得最大值1.
故选:C.
【答案点睛】
本题考查简单的线性规划问题,解题关键是作出可行域,本题要注意可行域不是一个封闭图形.
12、A
【答案解析】
根据分段函数的定义得,,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.
【题目详解】
依题意得,,则,
(当且仅当,即时“”成立.此时,,,的最小值为,
故选:A.
【答案点睛】
本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、存在,使得
【答案解析】
试题分析:根据命题否定的概念,可知命题“对任意,”的否定是“存在,使得”.
考点:命题的否定.
14、1
【答案解析】
按照“角”的位置分类,分“角”在两端,在中间,以及在第二个或第四个位置上,即可求出.
【题目详解】
①若“角”在两端,则宫、羽两音阶一定在角音阶同侧,此时有种;
②若“角”在中间,则不可能出现宫、羽两音阶不相邻且在角音阶的同侧;
③若“角”在第二个或第四个位置上,则有种;
综上,共有种.
故答案为:1.
【答案点睛】
本题主要考查利用排列知识解决实际问题,涉及分步计数乘法原理和分类计数加法原理的应用,意在考查学生分类讨论思想的应用和综合运用知识的能力,属于基础题.
15、
【答案解析】
的展开式的通项为:.
令,得.
答案为:-40.
点睛:求二项展开式有关问题的常见类型及解题策略
(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.
(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.
16、
【答案解析】
由题意可得等腰三角形的两条相等的边,设,由题可得的长,在三角形中,三角形中由余弦定理可得的值相等,可得的关系,从而求出椭圆的离心率
【题目详解】
如图,若为等腰三角形,则|BF1|=|AB|.设|BF2|=t,则|BF1|=2a−t,所以|AB|=a+t=|BF1|=2a−t,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,设∠BAO=θ,则∠BAF1=2θ,所以Г的离心率e=,结合余弦定理,易得在中,,所以,即e= =,
故答案为:.
【答案点睛】
此题考查椭圆的定义及余弦定理的简单应用,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤