温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
云南省
玉溪市
师院
附中
2023
学年
高考
冲刺
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知实数满足约束条件,则的最小值是
A. B. C.1 D.4
2.已知数列满足,(),则数列的通项公式( )
A. B. C. D.
3.已知函数,不等式对恒成立,则的取值范围为( )
A. B. C. D.
4.下列函数中,值域为的偶函数是( )
A. B. C. D.
5.根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是( )
A.至少有一个样本点落在回归直线上
B.若所有样本点都在回归直线上,则变量同的相关系数为1
C.对所有的解释变量(),的值一定与有误差
D.若回归直线的斜率,则变量x与y正相关
6.将函数的图像向左平移个单位得到函数的图像,则的最小值为( )
A. B. C. D.
7.已知点在双曲线上,则该双曲线的离心率为( )
A. B. C. D.
8.若函数在处有极值,则在区间上的最大值为( )
A. B.2 C.1 D.3
9.设集合,,则集合
A. B. C. D.
10.下图所示函数图象经过何种变换可以得到的图象( )
A.向左平移个单位 B.向右平移个单位
C.向左平移个单位 D.向右平移个单位
11.曲线在点处的切线方程为( )
A. B. C. D.
12.以,为直径的圆的方程是
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知三棱锥的四个顶点在球的球面上,,是边长为2的正三角形,,则球的体积为__________.
14.若正实数,,满足,则的最大值是__________.
15.已知的展开式中项的系数与项的系数分别为135与,则展开式所有项系数之和为______.
16.已知一个圆锥的底面积和侧面积分别为和,则该圆锥的体积为________
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,四棱锥的底面中,为等边三角形,是等腰三角形,且顶角,,平面平面,为中点.
(1)求证:平面;
(2)若,求二面角的余弦值大小.
18.(12分)如图,四棱锥E﹣ABCD的侧棱DE与四棱锥F﹣ABCD的侧棱BF都与底面ABCD垂直,,//,.
(1)证明://平面BCE.
(2)设平面ABF与平面CDF所成的二面角为θ,求.
19.(12分)设数列的前列项和为,已知.
(1)求数列的通项公式;
(2)求证:.
20.(12分)为了实现中华民族伟大复兴之梦,把我国建设成为富强民主文明和谐美丽的社会主义现代化强国,党和国家为劳动者开拓了宽广的创造性劳动的舞台.借此“东风”,某大型现代化农场在种植某种大棚有机无公害的蔬菜时,为创造更大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间和降低夜间温度两种不同方案.为比较两种方案下产量的区别,该农场选取了40间大棚(每间一亩),分成两组,每组20间进行试点.第一组采用延长光照时间的方案,第二组采用降低夜间温度的方案.同时种植该蔬菜一季,得到各间大棚产量数据信息如下图:
(1)如果你是该农场的负责人,在只考虑亩产量的情况下,请根据图中的数据信息,对于下一季大棚蔬菜的种植,说出你的决策方案并说明理由;
(2)已知种植该蔬菜每年固定的成本为6千元/亩.若采用延长光照时间的方案,光照设备每年的成本为0.22千元/亩;若采用夜间降温的方案,降温设备的每年成本为0.2千元/亩.已知该农场共有大棚100间(每间1亩),农场种植的该蔬菜每年产出两次,且该蔬菜市场的收购均价为1千元/千斤.根据题中所给数据,用样本估计总体,请计算在两种不同的方案下,种植该蔬菜一年的平均利润;
(3)农场根据以往该蔬菜的种植经验,认为一间大棚亩产量超过5.25千斤为增产明显.在进行夜间降温试点的20间大棚中随机抽取3间,记增产明显的大棚间数为,求的分布列及期望.
21.(12分)如图,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分别是AB,A1C的中点.
(1)求证:直线MN⊥平面ACB1;
(2)求点C1到平面B1MC的距离.
22.(10分)已知函数(,),且对任意,都有.
(Ⅰ)用含的表达式表示;
(Ⅱ)若存在两个极值点,,且,求出的取值范围,并证明;
(Ⅲ)在(Ⅱ)的条件下,判断零点的个数,并说明理由.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
作出该不等式组表示的平面区域,如下图中阴影部分所示,
设,则,易知当直线经过点时,z取得最小值,
由,解得,所以,所以,故选B.
2、A
【答案解析】
利用数列的递推关系式,通过累加法求解即可.
【题目详解】
数列满足:,,
可得
以上各式相加可得:
,
故选:.
【答案点睛】
本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力.
3、C
【答案解析】
确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.
【题目详解】
是奇函数,
,
易知均为减函数,故且在上单调递减,
不等式,即,
结合函数的单调性可得,即,
设,,故单调递减,故,
当,即时取最大值,所以.
故选:.
【答案点睛】
本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.
4、C
【答案解析】
试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C.
考点:1、函数的奇偶性;2、函数的值域.
5、D
【答案解析】
对每一个选项逐一分析判断得解.
【题目详解】
回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A错误;
所有样本点都在回归直线上,则变量间的相关系数为,故B错误;
若所有的样本点都在回归直线上,则的值与相等,故C错误;
相关系数r与符号相同,若回归直线的斜率,则,样本点分布应从左到右是上升的,则变量x与y正相关,故D正确.
故选D.
【答案点睛】
本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.
6、B
【答案解析】
根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可.
【题目详解】
将函数的图象向左平移个单位,
得到,
此时与函数的图象重合,
则,即,,
当时,取得最小值为,
故选:.
【答案点睛】
本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键.
7、C
【答案解析】
将点A坐标代入双曲线方程即可求出双曲线的实轴长和虚轴长,进而求得离心率.
【题目详解】
将,代入方程得,而双曲线的半实轴,所以,得离心率,故选C.
【答案点睛】
此题考查双曲线的标准方程和离心率的概念,属于基础题.
8、B
【答案解析】
根据极值点处的导数为零先求出的值,然后再按照求函数在连续的闭区间上最值的求法计算即可.
【题目详解】
解:由已知得,,,经检验满足题意.
,.
由得;由得或.
所以函数在上递增,在上递减,在上递增.
则,,
由于,所以在区间上的最大值为2.
故选:B.
【答案点睛】
本题考查了导数极值的性质以及利用导数求函数在连续的闭区间上的最值问题的基本思路,属于中档题.
9、B
【答案解析】
先求出集合和它的补集,然后求得集合的解集,最后取它们的交集得出结果.
【题目详解】
对于集合A,,解得或,故.对于集合B,,解得.故.故选B.
【答案点睛】
本小题主要考查一元二次不等式的解法,考查对数不等式的解法,考查集合的补集和交集的运算.对于有两个根的一元二次不等式的解法是:先将二次项系数化为正数,且不等号的另一边化为,然后通过因式分解,求得对应的一元二次方程的两个根,再利用“大于在两边,小于在中间”来求得一元二次不等式的解集.
10、D
【答案解析】
根据函数图像得到函数的一个解析式为,再根据平移法则得到答案.
【题目详解】
设函数解析式为,
根据图像:,,故,即,
,,取,得到,
函数向右平移个单位得到.
故选:.
【答案点睛】
本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用.
11、A
【答案解析】
将点代入解析式确定参数值,结合导数的几何意义求得切线斜率,即可由点斜式求的切线方程.
【题目详解】
曲线,即,
当时,代入可得,所以切点坐标为,
求得导函数可得,
由导数几何意义可知,
由点斜式可得切线方程为,即,
故选:A.
【答案点睛】
本题考查了导数的几何意义,在曲线上一点的切线方程求法,属于基础题.
12、A
【答案解析】
设圆的标准方程,利用待定系数法一一求出,从而求出圆的方程.
【题目详解】
设圆的标准方程为,
由题意得圆心为,的中点,
根据中点坐标公式可得,,
又,所以圆的标准方程为:
,化简整理得,
所以本题答案为A.
【答案点睛】
本题考查待定系数法求圆的方程,解题的关键是假设圆的标准方程,建立方程组,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由题意可得三棱锥的三条侧棱两两垂直,则它的外接球就是棱长为的正方体的外接球,求出正方体的对角线的长,就是球的直径,然后求出球的体积.
【题目详解】
解:因为,为正三角形,
所以,
因为,所以三棱锥的三条侧棱两两垂直,
所以它的外接球就是棱长为的正方体的外接球,
因为正方体的对角线长为,所以其外接球的半径为,
所以球的体积为
故答案为:
【答案点睛】
此题考查球的体积,几何体的外接球,考查空间想象能力,计算能力,属于中档题.
14、
【答案解析】
分析:将题中的式子进行整理,将当做一个整体,之后应用已知两个正数的整式形式和为定值,求分式形式和的最值的问题的求解方法,即可求得结果.
详解:,当且仅当等号成立,故答案是.
点睛:该题属于应用基本不等式求最值的问题,解决该题的关键是需要对式子进行化简,转化,利用整体思维,最后注意此类问题的求解方法-------相乘,即可得结果.
15、64
【答案解析】
由题意先求得的值,再令求出展开式中所有项的系数和.
【题目详解】
的展开式中项的系数与项的系数分别为135与,
,,
由两式可组成方程组,
解得或,
令,求得展开式中所有的系数之和为.
故答案为:64
【答案点睛】
本题考查了二项式定理,考查了赋值法求多项式展开式的系数和,属于基础题.
16、
【答案解析】
依据圆锥的底面积和侧面积公式,求出底面半径和母线长,再根据勾