温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
云南省
建水县
第六
中学
2023
年高
考考
前提
分数
仿真
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.双曲线的渐近线方程为( )
A. B. C. D.
2.已知,,则等于( ).
A. B. C. D.
3.正的边长为2,将它沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为( )
A. B. C. D.
4.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为
A.96 B.84 C.120 D.360
5.在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是( )
A. B. C. D.
6.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么( )
A.国防大学,研究生 B.国防大学,博士
C.军事科学院,学士 D.国防科技大学,研究生
7.为得到的图象,只需要将的图象( )
A.向左平移个单位 B.向左平移个单位
C.向右平移个单位 D.向右平移个单位
8.已知抛物线,过抛物线上两点分别作抛物线的两条切线为两切线的交点为坐标原点若,则直线与的斜率之积为( )
A. B. C. D.
9.函数在的图象大致为
A. B.
C. D.
10.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )
A. B. C. D.
11.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有( )
A.72种 B.144种 C.288种 D.360种
12.是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.如图,、分别是双曲线的左、右焦点,过的直线与双曲线的两条渐近线分别交于、两点,若,,则双曲线的离心率是______.
14.的展开式中项的系数为_______.
15.已知数列的前项和为,且满足,则______
16.展开式中项系数为160,则的值为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设函数.
(1)若,求函数的值域;
(2)设为的三个内角,若,求的值;
18.(12分)2019年12月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019,COVID—19),简称“新冠肺炎”.下图是2020年1月15日至1月24日累计确诊人数随时间变化的散点图.
为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间变量t的两个回归模型,根据1月15日至1月24日的数据(时间变量t的值依次1,2,…,10)建立模型和.
(1)根据散点图判断,与哪一个适宜作为累计确诊人数y与时间变量t的回归方程类型?(给出判断即可,不必说明理由)
(2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;
(3)以下是1月25日至1月29日累计确诊人数的真实数据,根据(2)的结果回答下列问题:
时间
1月25日
1月26日
1月27日
1月28日
1月29日
累计确诊人数的真实数据
1975
2744
4515
5974
7111
(ⅰ)当1月25日至1月27日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请判断(2)的回归方程是否可靠?
(ⅱ)2020年1月24日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?
附:对于一组数据(,,……,,其回归直线的斜率和截距的最小二乘估计分别为,.
参考数据:其中,.
5.5
390
19
385
7640
31525
154700
100
150
225
338
507
19.(12分)已知函数有两个极值点,.
(1)求实数的取值范围;
(2)证明:.
20.(12分)已知椭圆C:(a>b>0)过点(0,),且满足a+b=3.
(1)求椭圆C的方程;
(2)若斜率为的直线与椭圆C交于两个不同点A,B,点M坐标为(2,1),设直线MA与MB的斜率分别为k1,k2,试问k1+k2是否为定值?并说明理由.
21.(12分)设函数(其中),且函数在处的切线与直线平行.
(1)求的值;
(2)若函数,求证:恒成立.
22.(10分)已知函数,.
(1)讨论函数的单调性;
(2)已知在处的切线与轴垂直,若方程有三个实数解、、(),求证:.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
根据双曲线的标准方程,即可写出渐近线方程.
【题目详解】
双曲线,
双曲线的渐近线方程为,
故选:C
【答案点睛】
本题主要考查了双曲线的简单几何性质,属于容易题.
2、B
【答案解析】
由已知条件利用诱导公式得,再利用三角函数的平方关系和象限角的符号,即可得到答案.
【题目详解】
由题意得 ,
又,所以,结合解得,
所以 ,
故选B.
【答案点睛】
本题考查三角函数的诱导公式、同角三角函数的平方关系以及三角函数的符号与位置关系,属于基础题.
3、D
【答案解析】
如图所示,设的中点为,的外接圆的圆心为,四面体的外接球的球心为,连接,利用正弦定理可得,利用球心的性质和线面垂直的性质可得四边形为平行四边形,最后利用勾股定理可求外接球的半径,从而可得外接球的表面积.
【题目详解】
如图所示,设的中点为,外接圆的圆心为,四面体的外接球的球心为,连接,则平面,.
因为,故,
因为,故.
由正弦定理可得,故,又因为,故.
因为,故平面,所以,
因为平面,平面,故,故,
所以四边形为平行四边形,所以,
所以,故外接球的半径为,外接球的表面积为.
故选:D.
【答案点睛】
本题考查平面图形的折叠以及三棱锥外接球表面积的计算,还考查正弦定理和余弦定理,折叠问题注意翻折前后的变量与不变量,外接球问题注意先确定外接球的球心的位置,然后把半径放置在可解的直角三角形中来计算,本题有一定的难度.
4、B
【答案解析】
2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共个,其中含有2个10的排列数共个,所以产生的不同的6位数的个数为.故选B.
5、A
【答案解析】
由复数z求得点Z的坐标,得到向量的坐标,逆时针旋转,得到向量的坐标,则对应的复数可求.
【题目详解】
解:∵复数z=i(i为虚数单位)在复平面中对应点Z(0,1),
∴=(0,1),将绕原点O逆时针旋转得到,
设=(a,b),,
则,
即,
又,
解得:,
∴,
对应复数为.
故选:A.
【答案点睛】
本题考查复数的代数表示法及其几何意义,是基础题.
6、C
【答案解析】
根据①③可判断丙的院校;由②和⑤可判断丙的学位.
【题目详解】
由题意①甲不是军事科学院的,③乙不是军事科学院的;
则丙来自军事科学院;
由②来自军事科学院的不是博士,则丙不是博士;
由⑤国防科技大学的是研究生,可知丙不是研究生,
故丙为学士.
综上可知,丙来自军事科学院,学位是学士.
故选:C.
【答案点睛】
本题考查了合情推理的简单应用,由条件的相互牵制判断符合要求的情况,属于基础题.
7、D
【答案解析】
试题分析:因为,所以为得到的图象,只需要将的图象向右平移个单位;故选D.
考点:三角函数的图像变换.
8、A
【答案解析】
设出A,B的坐标,利用导数求出过A,B的切线的斜率,结合,可得x1x2=﹣1.再写出OA,OB所在直线的斜率,作积得答案.
【题目详解】
解:设A(),B(),
由抛物线C:x2=1y,得,则y′.
∴,,
由,可得,即x1x2=﹣1.
又,,
∴.
故选:A.
点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是解题的思路,由于与切线有关,所以一般先设切点,先设A,B,,再求切线PA,PB方程,
求点P坐标,再根据得到最后求直线与的斜率之积.如果先设点P的坐标,计算量就大一些.
9、A
【答案解析】
因为,所以排除C、D.当从负方向趋近于0时,,可得.故选A.
10、C
【答案解析】
由三视图可知,该几何体是下部是半径为2,高为1的圆柱的一半,上部为底面半径为2,高为2的圆锥的一半,所以,半圆柱的体积为,上部半圆锥的体积为,所以该几何体的体积为,故应选.
11、B
【答案解析】
利用分步计数原理结合排列求解即可
【题目详解】
第一步排语文,英语,化学,生物4种,且化学排在生物前面,有种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有种排法,所以不同的排表方法共有种.
选.
【答案点睛】
本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题
12、D
【答案解析】
根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.
【题目详解】
因为是定义在上的增函数,故.
又有意义,故,故,所以.
令,则,
故在上为增函数,所以即,
整理得到.
故选:D.
【答案点睛】
本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
根据三角形中位线证得,结合判断出垂直平分,由此求得的值,结合求得的值.
【题目详解】
∵,∴为中点,,∵,∴垂直平分,∴,即,∴,,即.
故答案为:
【答案点睛】
本小题主要考查双曲线离心率的求法,考查化归与转化的数学思想方法,属于基础题.
14、40
【答案解析】
根据二项定理展开式,求得r的值,进而求得系数.
【题目详解】
根据二项定理展开式的通项式得
所以 ,解得
所以系数
【答案点睛】
本题考查了二项式定理的简单应用,属于基础题.
15、
【答案解析】
对题目所给等式进行赋值,由