温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
北京
房山区
2023
学年
高考
冲刺
押题
最后
一卷
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.公差不为零的等差数列{an}中,a1+a2+a5=13,且a1、a2、a5成等比数列,则数列{an}的公差等于( )
A.1 B.2 C.3 D.4
2.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:,,,那么在不超过18的素数中随机选取两个不同的数,其和等于16的概率为( )
A. B. C. D.
3.以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月)变化图表,则以下说法错误的是( )
(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)
A.3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均
B.4月份仅有三个城市居民消费价格指数超过102
C.四个月的数据显示北京市的居民消费价格指数增长幅度波动较小
D.仅有天津市从年初开始居民消费价格指数的增长呈上升趋势
4.已知函数的部分图象如图所示,则( )
A. B. C. D.
5.刘徽是我国魏晋时期伟大的数学家,他在《九章算术》中对勾股定理的证明如图所示.“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也”.已知图中网格纸上小正方形的边长为1,其中“正方形为朱方,正方形为青方”,则在五边形内随机取一个点,此点取自朱方的概率为( )
A. B. C. D.
6.已知实数、满足不等式组,则的最大值为( )
A. B. C. D.
7.“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门。该款软件主要设有“阅读文章”、“视听学习”两个学习模块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题模块。某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有( )
A.60 B.192 C.240 D.432
8.某几何体的三视图如图所示,则该几何体的体积为( )
A. B.3 C. D.4
9.抛物线的焦点为,准线为,,是抛物线上的两个动点,且满足,设线段的中点在上的投影为,则的最大值是( )
A. B. C. D.
10.已知数列中,,且当为奇数时,;当为偶数时,.则此数列的前项的和为( )
A. B. C. D.
11.在中,,,分别为角,,的对边,若的面为,且,则( )
A.1 B. C. D.
12.已知集合A,则集合( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)函数的定义域是____________.
14.成都市某次高三统考,成绩X经统计分析,近似服从正态分布,且,若该市有人参考,则估计成都市该次统考中成绩大于分的人数为_____.
15.某市公租房源位于、、三个小区,每位申请人只能申请其中一个小区的房子,申请其中任意一个小区的房子是等可能的,则该市的任意位申请人中,恰好有人申请小区房源的概率是______ .(用数字作答)
16.如图,在直四棱柱中,底面是平行四边形,点是棱的中点,点是棱靠近的三等分点,且三棱锥的体积为2,则四棱柱的体积为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)的内角的对边分别为,若
(1)求角的大小
(2)若,求的周长
18.(12分)在中,角A、B、C的对边分别为a、b、c,且.
(1)求角A的大小;
(2)若,的平分线与交于点D,与的外接圆交于点E(异于点A),,求的值.
19.(12分)已知数列,其前项和为,满足,,其中,,,.
⑴若,,(),求证:数列是等比数列;
⑵若数列是等比数列,求,的值;
⑶若,且,求证:数列是等差数列.
20.(12分)在中,内角的对边分别是,已知.
(1)求角的值;
(2)若,,求的面积.
21.(12分) [选修4-5:不等式选讲]:已知函数.
(1)当时,求不等式的解集;
(2)设,,且的最小值为.若,求的最小值.
22.(10分)已知函数 ,
(1)求函数的单调区间;
(2)当时,判断函数,()有几个零点,并证明你的结论;
(3)设函数,若函数在为增函数,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
设数列的公差为.由,成等比数列,列关于的方程组,即求公差.
【题目详解】
设数列的公差为,
①.
成等比数列,②,
解①②可得.
故选:.
【答案点睛】
本题考查等差数列基本量的计算,属于基础题.
2、B
【答案解析】
先求出从不超过18的素数中随机选取两个不同的数的所有可能结果,然后再求出其和等于16的结果,根据等可能事件的概率公式可求.
【题目详解】
解:不超过18的素数有2,3,5,7,11,13,17共7个,从中随机选取两个不同的数共有,
其和等于16的结果,共2种等可能的结果,
故概率.
故选:B.
【答案点睛】
古典概型要求能够列举出所有事件和发生事件的个数,本题不可以列举出所有事件但可以用分步计数得到,属于基础题.
3、D
【答案解析】
采用逐一验证法,根据图表,可得结果.
【题目详解】
A正确,从图表二可知,
3月份四个城市的居民消费价格指数相差不大
B正确,从图表二可知,
4月份只有北京市居民消费价格指数低于102
C正确,从图表一中可知,
只有北京市4个月的居民消费价格指数相差不大
D错误,从图表一可知
上海市也是从年初开始居民消费价格指数的增长呈上升趋势
故选:D
【答案点睛】
本题考查图表的认识,审清题意,细心观察,属基础题.
4、A
【答案解析】
先利用最高点纵坐标求出A,再根据求出周期,再将代入求出φ的值.最后将代入解析式即可.
【题目详解】
由图象可知A=1,
∵,所以T=π,∴.
∴f(x)=sin(2x+φ),将代入得φ)=1,
∴φ,结合0<φ,∴φ.
∴.
∴sin
.
故选:A.
【答案点睛】
本题考查三角函数的据图求式问题以及三角函数的公式变换.据图求式问题要注意结合五点法作图求解.属于中档题.
5、C
【答案解析】
首先明确这是一个几何概型面积类型,然后求得总事件的面积和所研究事件的面积,代入概率公式求解.
【题目详解】
因为正方形为朱方,其面积为9,
五边形的面积为,
所以此点取自朱方的概率为.
故选:C
【答案点睛】
本题主要考查了几何概型的概率求法,还考查了数形结合的思想和运算求解的能力,属于基础题.
6、A
【答案解析】
画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答案.
【题目详解】
画出不等式组所表示平面区域,如图所示,
由目标函数,化为直线,当直线过点A时,
此时直线在y轴上的截距最大,目标函数取得最大值,
又由,解得,
所以目标函数的最大值为,故选A.
【答案点睛】
本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.
7、C
【答案解析】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法.注意按“阅读文章”分类.
【题目详解】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为.
故选:C.
【答案点睛】
本题考查排列组合的应用,考查捆绑法和插入法求解排列问题.对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法.
8、C
【答案解析】
首先把三视图转换为几何体,该几何体为由一个三棱柱体,切去一个三棱锥体,由柱体、椎体的体积公式进一步求出几何体的体积.
【题目详解】
解:根据几何体的三视图转换为几何体为:
该几何体为由一个三棱柱体,切去一个三棱锥体,
如图所示:
故:.
故选:C.
【答案点睛】
本题考查了由三视图求几何体的体积、需熟记柱体、椎体的体积公式,考查了空间想象能力,属于基础题.
9、B
【答案解析】
试题分析:设在直线上的投影分别是,则,,又是中点,所以,则,在中,所以,即,所以,故选B.
考点:抛物线的性质.
【名师点晴】
在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦的中点到准线的距离首先等于两点到准线距离之和的一半,然后转化为两点到焦点的距离,从而与弦长之间可通过余弦定理建立关系.
10、A
【答案解析】
根据分组求和法,利用等差数列的前项和公式求出前项的奇数项的和,利用等比数列的前项和公式求出前项的偶数项的和,进而可求解.
【题目详解】
当为奇数时,,
则数列奇数项是以为首项,以为公差的等差数列,
当为偶数时,,
则数列中每个偶数项加是以为首项,以为公比的等比数列.
所以
.
故选:A
【答案点睛】
本题考查了数列分组求和、等差数列的前项和公式、等比数列的前项和公式,需熟记公式,属于基础题.
11、D
【答案解析】
根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可.
【题目详解】
解:由,
得,
∵ ,
∴ ,
即
即,
则,
∵ ,
∴ ,
∴ ,即,
则,
故选D.
【答案点睛】
本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.
12、A
【答案解析】
化简集合,,按交集定义,即可求解.
【题目详解】
集合,
,则.
故选:A.
【答案点睛】
本题考查集合间的运算,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
要使函数有意义,则,即,解得,故函数的定义域是.
14、.
【答案解析】
根据正态分布密度曲线性质,结合求得,即可得解.
【题目详解】
根据正态分布,且,
所以
故该市有人参考,则估计成都市该次统考中成绩大于分的人数为.
故答案为:.
【答案点睛】
此题考查正态分布密度曲线性质的理解辨析,根据曲线的对称性求解概率,根据总人数求解成绩大于114的人数.
15、
【答案解析】
基本事件总数,恰好有2人申请小区房源包含的基本事件个数,由此能求出该市的任意5位申请人中,恰好有2人申请小区房源的概率.
【题目详解】
解:某市公租房源位于、、三个小区,每位申请人只能申请其中一个小区的房子,申请其中任意一个小区的房子是等可能的,
该市的任意5位申请人中,基本事件总数,
该市的任意5位申请人中,恰好有2人申请小区房源包含的基本事件个数:
,
该市的