温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
云南省
澄江县
第二
中学
2023
学年
高考
数学
考前
最后
一卷
预测
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是( )
A.若,,,则
B.若,,,则
C.若,,,则
D.若,,,则
2.若直线的倾斜角为,则的值为( )
A. B. C. D.
3.已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为( )
A. B. C. D.
4.若函数为自然对数的底数)在区间上不是单调函数,则实数的取值范围是( )
A. B. C. D.
5.甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为 ( )
A.8 B.7 C.6 D.5
6.若满足约束条件则的最大值为( )
A.10 B.8 C.5 D.3
7.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是()
A. B. C. D.
8.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则( )
A. B. C. D.
9.已知复数(为虚数单位),则下列说法正确的是( )
A.的虚部为 B.复数在复平面内对应的点位于第三象限
C.的共轭复数 D.
10.已知双曲线的左、右焦点分别为,,点P是C的右支上一点,连接与y轴交于点M,若(O为坐标原点),,则双曲线C的渐近线方程为( )
A. B. C. D.
11.函数的值域为( )
A. B. C. D.
12.已知集合,,则等于( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知两动点在椭圆上,动点在直线上,若恒为锐角,则椭圆的离心率的取值范围为__________.
14.在的展开式中,所有的奇数次幂项的系数和为-64,则实数的值为__________.
15.一个村子里一共有个人,其中一个人是谣言制造者,他编造了一条谣言并告诉了另一个人,这个人又把谣言告诉了第三个人,如此等等.在每一次谣言传播时,谣言的接受者都是在其余个村民中随机挑选的,当谣言传播次之后,还没有回到最初的造谣者的概率是_______.
16.《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑中,平面,,且,过点分别作于点,于点,连接,则三棱锥的体积的最大值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知各项均为正数的数列的前项和为,且是与的等差中项.
(1)证明:为等差数列,并求;
(2)设,数列的前项和为,求满足的最小正整数的值.
18.(12分)已知函数,.
(1)若函数在上单调递减,且函数在上单调递增,求实数的值;
(2)求证:(,且).
19.(12分)曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程和曲线的直角坐标方程;
(2)过原点且倾斜角为的射线与曲线分别交于两点(异于原点),求的取值范围.
20.(12分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,以椭圆C左顶点T为圆心作圆,设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:为定值.
21.(12分)已知直线:(为参数),曲线(为参数).
(1)设与相交于,两点,求;
(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线距离的最小值.
22.(10分)某工厂,两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,生产线生产的产品为合格品的概率分别为和.
(1)从,生产线上各抽检一件产品,若使得至少有一件合格的概率不低于,求的最小值.
(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的作为的值.
①已知,生产线的不合格产品返工后每件产品可分别挽回损失元和元.若从两条生产线上各随机抽检件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多?
②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件分别获利元、元、元,现从,生产线的最终合格品中各随机抽取件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估算该厂产量件时利润的期望值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
试题分析:,,故选D.
考点:点线面的位置关系.
2、B
【答案解析】
根据题意可得:,所求式子利用二倍角的正弦函数公式化简,再利用同角三角函数间的基本关系弦化切后,将代入计算即可求出值.
【题目详解】
由于直线的倾斜角为,所以,
则
故答案选B
【答案点睛】
本题考查二倍角的正弦函数公式,同角三角函数间的基本关系,以及直线倾斜角与斜率之间的关系,熟练掌握公式是解本题的关键.
3、D
【答案解析】
设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,
设,得,求出的值,即得解.
【题目详解】
设双曲线C的左焦点为,连接,
由对称性可知四边形是平行四边形,
所以,.
设,则,
又.故,
所以.
故选:D
【答案点睛】
本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.
4、B
【答案解析】
求得的导函数,由此构造函数,根据题意可知在上有变号零点.由此令,利用分离常数法结合换元法,求得的取值范围.
【题目详解】
,
设,
要使在区间上不是单调函数,
即在上有变号零点,令,
则,
令,则问题即在上有零点,由于在上递增,所以的取值范围是.
故选:B
【答案点睛】
本小题主要考查利用导数研究函数的单调性,考查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题.
5、B
【答案解析】
根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙); A(甲,丁)B(丙)C(乙); A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B.
6、D
【答案解析】
画出可行域,将化为,通过平移即可判断出最优解,代入到目标函数,即可求出最值.
【题目详解】
解:由约束条件作出可行域如图,
化目标函数为直线方程的斜截式,.由图可知
当直线过时,直线在轴上的截距最大,有最大值为3.
故选:D.
【答案点睛】
本题考查了线性规划问题.一般第一步画出可行域,然后将目标函数转化为 的形式,在可行域内通过平移找到最优解,将最优解带回到目标函数即可求出最值.注意画可行域时,边界线的虚实问题.
7、A
【答案解析】
由直线过椭圆的左焦点,得到左焦点为,且,
再由,求得,代入椭圆的方程,求得,进而利用椭圆的离心率的计算公式,即可求解.
【题目详解】
由题意,直线经过椭圆的左焦点,令,解得,
所以,即椭圆的左焦点为,且 ①
直线交轴于,所以,,
因为,所以,所以,
又由点在椭圆上,得 ②
由,可得,解得,
所以,
所以椭圆的离心率为.
故选A.
【答案点睛】
本题考查了椭圆的几何性质——离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:①求出 ,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围).
8、D
【答案解析】
由题知,又,代入计算可得.
【题目详解】
由题知,又.
故选:D
【答案点睛】
本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.
9、D
【答案解析】
利用的周期性先将复数化简为即可得到答案.
【题目详解】
因为,,,所以的周期为4,故,
故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共
轭复数为,C错误;,D正确.
故选:D.
【答案点睛】
本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.
10、C
【答案解析】
利用三角形与相似得,结合双曲线的定义求得的关系,从而求得双曲线的渐近线方程。
【题目详解】
设,,
由,与相似,
所以,即,
又因为,
所以,,
所以,即,,
所以双曲线C的渐近线方程为.
故选:C.
【答案点睛】
本题考查双曲线几何性质、渐近线方程求解,考查数形结合思想,考查逻辑推理能力和运算求解能力。
11、A
【答案解析】
由计算出的取值范围,利用正弦函数的基本性质可求得函数的值域.
【题目详解】
,,,
因此,函数的值域为.
故选:A.
【答案点睛】
本题考查正弦型函数在区间上的值域的求解,解答的关键就是求出对象角的取值范围,考查计算能力,属于基础题.
12、B
【答案解析】
解不等式确定集合,然后由补集、并集定义求解.
【题目详解】
由题意或,
∴,
.
故选:B.
【答案点睛】
本题考查集合的综合运算,以及一元二次不等式的解法,属于基础题型.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
根据题意可知圆上任意一点向椭圆所引的两条切线互相垂直,恒为锐角,只需直线 与圆相离,从而可得,解不等式,再利用离心率即可求解.
【题目详解】
根据题意可得,圆上任意一点向椭圆所引的两条切线互相垂直,
因此当直线 与圆相离时, 恒为锐角,
故,解得
从而离心率.
故答案为:
【答案点睛】
本题主要考查了椭圆的几何性质,考查了逻辑分析能力,属于中档题.
14、3或-1
【答案解析】
设,分别令、,两式相减即可得,即可得解.
【题目详解】
设,
令,则①,
令,则②,
则①-②得,
则,解得或.
故答案为:3或-1.
【答案点睛】
本题考查了二项式定理的应用,考查了运算能力,属于中档题.
15、
【答案解析】
利用相互独立事件概率的乘法公式即可求解.
【题目详解】
第1次传播,谣言一定不会回到最初的人;
从第2次传播开始,每1次谣言传播,第一个制造谣言的人被选中的概率都是,
没有被选中的概率是.
次传播是相互独立的,故为
故答案为:
【答案点睛】
本题考查了相互独立事件概率的乘法公式,考查了考生的分析能力,属于基础题.
16、
【答案解析】
由已知可得△AEF、△PEF均为直角三角形,且AF=2,由基本不等式可得当AE=EF=2时,△AEF的面积最大,然后由棱锥体积公式可求得体积最大值.
【题目详解】
由PA⊥平面ABC,得PA⊥BC,
又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,则BC⊥AE,
又PB⊥AE,则AE⊥平面PBC,
于是AE⊥EF,且AE⊥PC,结合条件AF⊥PC,得PC⊥平面AEF