温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
云南
省会
曲靖市
会泽县
第一
中学
2023
学年
高考
冲刺
数学模拟
试题
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,则的大小关系为
A. B. C. D.
2.执行如图所示的程序框图,若输出的值为8,则框图中①处可以填( ).
A. B. C. D.
3.已知函数(,)的一个零点是,函数图象的一条对称轴是直线,则当取得最小值时,函数的单调递增区间是( )
A.() B.()
C.() D.()
4.已知函数若对区间内的任意实数,都有,则实数的取值范围是( )
A. B. C. D.
5.已知,则p是q的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
6.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有( )
A.12种 B.18种 C.24种 D.64种
7.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为( )
A. B. C. D.
8.已知集合,则集合真子集的个数为( )
A.3 B.4 C.7 D.8
9.若复数z满足,则复数z在复平面内对应的点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.执行如图所示的程序框图,则输出的的值为( )
A. B.
C. D.
11.下图是我国第24~30届奥运奖牌数的回眸和中国代表团奖牌总数统计图,根据表和统计图,以下描述正确的是( ).
金牌
(块)
银牌
(块)
铜牌
(块)
奖牌
总数
24
5
11
12
28
25
16
22
12
54
26
16
22
12
50
27
28
16
15
59
28
32
17
14
63
29
51
21
28
100
30
38
27
23
88
A.中国代表团的奥运奖牌总数一直保持上升趋势
B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义
C.第30届与第29届北京奥运会相比,奥运金牌数、银牌数、铜牌数都有所下降
D.统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.5
12.在的展开式中,含的项的系数是( )
A.74 B.121 C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.的展开式中含的系数为__________.(用数字填写答案)
14.已知为矩形的对角线的交点,现从这5个点中任选3个点,则这3个点不共线的概率为________.
15.已知数列是等比数列,,则__________.
16.在平面直角坐标系中,点P在直线上,过点P作圆C:的一条切线,切点为T.若,则的长是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在直三棱柱中,,,为的中点,点在线段上,且平面.
(1)求证:;
(2)求平面与平面所成二面角的正弦值.
18.(12分)已知数列满足且
(1)求数列的通项公式;
(2)求数列的前项和.
19.(12分)一种游戏的规则为抛掷一枚硬币,每次正面向上得2分,反面向上得1分.
(1)设抛掷4次的得分为,求变量的分布列和数学期望.
(2)当游戏得分为时,游戏停止,记得分的概率和为.
①求;
②当时,记,证明:数列为常数列,数列为等比数列.
20.(12分)已知函数,
(1)若,求的单调区间和极值;
(2)设,且有两个极值点,,若,求的最小值.
21.(12分)某广告商租用了一块如图所示的半圆形封闭区域用于产品展示,该封闭区域由以为圆心的半圆及直径围成.在此区域内原有一个以为直径、为圆心的半圆形展示区,该广告商欲在此基础上,将其改建成一个凸四边形的展示区,其中、分别在半圆与半圆的圆弧上,且与半圆相切于点.已知长为40米,设为.(上述图形均视作在同一平面内)
(1)记四边形的周长为,求的表达式;
(2)要使改建成的展示区的面积最大,求的值.
22.(10分)以平面直角坐标系的原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,已知曲线,曲线(为参数),求曲线交点的直角坐标.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.
详解:由题意可知:,即,,即,
,即,综上可得:.本题选择D选项.
点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.
2、C
【答案解析】
根据程序框图写出几次循环的结果,直到输出结果是8时.
【题目详解】
第一次循环:
第二次循环:
第三次循环:
第四次循环:
第五次循环:
第六次循环:
第七次循环:
第八次循环:
所以框图中①处填时,满足输出的值为8.
故选:C
【答案点睛】
此题考查算法程序框图,根据循环条件依次写出每次循环结果即可解决,属于简单题目.
3、B
【答案解析】
根据函数的一个零点是,得出,再根据是对称轴,得出,求出的最小值与对应的,写出即可求出其单调增区间.
【题目详解】
依题意得,,即,
解得或(其中,).①
又,
即(其中).②
由①②得或,
即或(其中,,),因此的最小值为.
因为,所以().
又,所以,所以,
令(),则().
因此,当取得最小值时,的单调递增区间是().
故选:B
【答案点睛】
此题考查三角函数的对称轴和对称点,在对称轴处取得最值,对称点处函数值为零,属于较易题目.
4、C
【答案解析】
分析:先求导,再对a分类讨论求函数的单调区间,再画图分析转化对区间内的任意实数,都有,得到关于a的不等式组,再解不等式组得到实数a的取值范围.
详解:由题得.
当a<1时,,所以函数f(x)在单调递减,
因为对区间内的任意实数,都有,
所以,
所以
故a≥1,与a<1矛盾,故a<1矛盾.
当1≤a<e时,函数f(x)在[0,lna]单调递增,在(lna,1]单调递减.
所以
因为对区间内的任意实数,都有,
所以,
所以
即
令,
所以
所以函数g(a)在(1,e)上单调递减,
所以,
所以当1≤a<e时,满足题意.
当a时,函数f(x)在(0,1)单调递增,
因为对区间内的任意实数,都有,
所以,
故1+1,
所以
故
综上所述,a∈.
故选C.
点睛:本题的难点在于“对区间内的任意实数,都有”的转化.由于是函数的问题,所以我们要联想到利用函数的性质(单调性、奇偶性、周期性、对称性、最值、极值等)来分析解答问题.本题就是把这个条件和函数的单调性和最值联系起来,完成了数学问题的等价转化,找到了问题的突破口.
5、B
【答案解析】
根据诱导公式化简再分析即可.
【题目详解】
因为,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分条件.
故选:B
【答案点睛】
本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.
6、C
【答案解析】
根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.
【题目详解】
解:根据题意,分2步进行分析:
①,将4人分成3组,有种分法;
②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,
将剩下的2组全排列,安排其他的2项工作,有种情况,
此时有种情况,
则有种不同的安排方法;
故选:C.
【答案点睛】
本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.
7、C
【答案解析】
分类讨论,仅有一个阳爻的有坎、艮、震三卦,从中取两卦;从仅有两个阳爻的有巽、离、兑三卦中取一个,再取没有阳爻的坤卦,计算满足条件的种数,利用古典概型即得解.
【题目详解】
由图可知,仅有一个阳爻的有坎、艮、震三卦,从中取两卦满足条件,其种数是;
仅有两个阳爻的有巽、离、兑三卦,没有阳爻的是坤卦,此时取两卦满足条件的种数是,于是所求的概率.
故选:C
【答案点睛】
本题考查了古典概型的应用,考查了学生综合分析,分类讨论,数学运算的能力,属于基础题.
8、C
【答案解析】
解出集合,再由含有个元素的集合,其真子集的个数为个可得答案.
【题目详解】
解:由,得
所以集合的真子集个数为个.
故选:C
【答案点睛】
此题考查利用集合子集个数判断集合元素个数的应用,含有个元素的集合,其真子集的个数为个,属于基础题.
9、A
【答案解析】
化简复数,求得,得到复数在复平面对应点的坐标,即可求解.
【题目详解】
由题意,复数z满足,可得,
所以复数在复平面内对应点的坐标为位于第一象限
故选:A.
【答案点睛】
本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.
10、B
【答案解析】
列出循环的每一步,进而可求得输出的值.
【题目详解】
根据程序框图,执行循环前:,,,
执行第一次循环时:,,所以:不成立.
继续进行循环,…,
当,时,成立,,
由于不成立,执行下一次循环,
,,成立,,成立,输出的的值为.
故选:B.
【答案点睛】
本题考查的知识要点:程序框图的循环结构和条件结构的应用,主要考查学生的运算能力和转换能力,属于基础题型.
11、B
【答案解析】
根据表格和折线统计图逐一判断即可.
【题目详解】
A.中国代表团的奥运奖牌总数不是一直保持上升趋势,29届最多,错误;
B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不表示某种意思,正确;
C.30届与第29届北京奥运会相比,奥运金牌数、铜牌数有所下降,银牌数有所上升,错误;
D. 统计图中前六届奥运会中国代表团的奥运奖牌总数按照顺序