分享
北京市北师大二附中2023学年高考数学押题试卷(含解析).doc
下载文档

ID:20976

大小:2.06MB

页数:22页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
北京市 北师大 附中 2023 学年 高考 数学 押题 试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.年初,湖北出现由新型冠状病毒引发的肺炎.为防止病毒蔓延,各级政府相继启动重大突发公共卫生事件一级响应,全国人心抗击疫情.下图表示月日至月日我国新型冠状病毒肺炎单日新增治愈和新增确诊病例数,则下列中表述错误的是( ) A.月下旬新增确诊人数呈波动下降趋势 B.随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数 C.月日至月日新增确诊人数波动最大 D.我国新型冠状病毒肺炎累计确诊人数在月日左右达到峰值 2.已知符号函数sgnxf(x)是定义在R上的减函数,g(x)=f(x)﹣f(ax)(a>1),则( ) A.sgn[g(x)]=sgn x B.sgn[g(x)]=﹣sgnx C.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)] 3.已知定义在上的函数在区间上单调递增,且的图象关于对称,若实数满足,则的取值范围是( ) A. B. C. D. 4.在我国传统文化“五行”中,有“金、木、水、火、土”五个物质类别,在五者之间,有一种“相生”的关系,具体是:金生水、水生木、木生火、火生土、土生金.从五行中任取两个,这二者具有相生关系的概率是( ) A.0.2 B.0.5 C.0.4 D.0.8 5.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线近似地刻画其相关关系,根据图形,以下结论最有可能成立的是(  ) A.线性相关关系较强,b的值为1.25 B.线性相关关系较强,b的值为0.83 C.线性相关关系较强,b的值为-0.87 D.线性相关关系太弱,无研究价值 6.函数在上为增函数,则的值可以是( ) A.0 B. C. D. 7.已知函数则函数的图象的对称轴方程为( ) A. B. C. D. 8.一辆邮车从地往地运送邮件,沿途共有地,依次记为,,…(为地,为地).从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达,,…各地装卸完毕后剩余的邮件数记为.则的表达式为( ). A. B. C. D. 9.若实数x,y满足条件,目标函数,则z 的最大值为( ) A. B.1 C.2 D.0 10.若复数满足,则( ) A. B. C. D. 11.当输入的实数时,执行如图所示的程序框图,则输出的不小于103的概率是( ) A. B. C. D. 12.已知复数,(为虚数单位),若为纯虚数,则(  ) A. B.2 C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知双曲线(,)的左,右焦点分别为,,过点的直线与双曲线的左,右两支分别交于,两点,若,,则双曲线的离心率为__________. 14.如图,是圆的直径,弦的延长线相交于点垂直的延长线于点.求证: 15.在中, ,,则_________. 16.已知若存在,使得成立的最大正整数为6,则的取值范围为________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)设 (1)证明:当时,; (2)当时,求整数的最大值.(参考数据:,) 18.(12分)如图,在三棱柱中,平面,,且. (1)求棱与所成的角的大小; (2)在棱上确定一点,使二面角的平面角的余弦值为. 19.(12分)在中,角的对边分别为,若. (1)求角的大小; (2)若,为外一点,,求四边形面积的最大值. 20.(12分)购买一辆某品牌新能源汽车,在行驶三年后,政府将给予适当金额的购车补贴.某调研机构对拟购买该品牌汽车的消费者,就购车补贴金额的心理预期值进行了抽样调查,其样本频率分布直方图如图所示 . (1)估计拟购买该品牌汽车的消费群体对购车补贴金额的心理预期值的方差(同一组中的数据用该组区间的中点值作代表); (2)将频率视为概率,从拟购买该品牌汽车的消费群体中随机抽取人,记对购车补贴金额的心理预期值高于万元的人数为,求的分布列和数学期望; (3)统计最近个月该品牌汽车的市场销售量,得其频数分布表如下: 月份 销售量(万辆) 试预计该品牌汽车在年月份的销售量约为多少万辆? 附:对于一组样本数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为,. 21.(12分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切. (1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程; (2)若点,为曲线上两动点,且满足,求面积的最大值. 22.(10分)如图所示的几何体中,,四边形为正方形,四边形为梯形,,,,为中点. (1)证明:; (2)求二面角的余弦值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 根据新增确诊曲线的走势可判断A选项的正误;根据新增确诊曲线与新增治愈曲线的位置关系可判断B选项的正误;根据月日至月日新增确诊曲线的走势可判断C选项的正误;根据新增确诊人数的变化可判断D选项的正误.综合可得出结论. 【题目详解】 对于A选项,由图象可知,月下旬新增确诊人数呈波动下降趋势,A选项正确; 对于B选项,由图象可知,随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数,B选项正确; 对于C选项,由图象可知,月日至月日新增确诊人数波动最大,C选项正确; 对于D选项,在月日及以前,我国新型冠状病毒肺炎新增确诊人数大于新增治愈人数,我国新型冠状病毒肺炎累计确诊人数不在月日左右达到峰值,D选项错误. 故选:D. 【答案点睛】 本题考查统计图表的应用,考查数据处理能力,属于基础题. 2、A 【答案解析】 根据符号函数的解析式,结合f(x)的单调性分析即可得解. 【题目详解】 根据题意,g(x)=f(x)﹣f(ax),而f(x)是R上的减函数, 当x>0时,x<ax,则有f(x)>f(ax),则g(x)=f(x)﹣f(ax)>0,此时sgn[g ( x)]=1, 当x=0时,x=ax,则有f(x)=f(ax),则g(x)=f(x)﹣f(ax)=0,此时sgn[g ( x)]=0, 当x<0时,x>ax,则有f(x)<f(ax),则g(x)=f(x)﹣f(ax)<0,此时sgn[g ( x)]=﹣1, 综合有:sgn[g ( x)]=sgn(x); 故选:A. 【答案点睛】 此题考查函数新定义问题,涉及函数单调性辨析,关键在于读懂定义,根据自变量的取值范围分类讨论. 3、C 【答案解析】 根据题意,由函数的图象变换分析可得函数为偶函数,又由函数在区间上单调递增,分析可得,解可得的取值范围,即可得答案. 【题目详解】 将函数的图象向左平移个单位长度可得函数的图象, 由于函数的图象关于直线对称,则函数的图象关于轴对称, 即函数为偶函数,由,得, 函数在区间上单调递增,则,得,解得. 因此,实数的取值范围是. 故选:C. 【答案点睛】 本题考查利用函数的单调性与奇偶性解不等式,注意分析函数的奇偶性,属于中等题. 4、B 【答案解析】 利用列举法,结合古典概型概率计算公式,计算出所求概率. 【题目详解】 从五行中任取两个,所有可能的方法为:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共种,其中由相生关系的有金水、木水、木火、火土、金土,共种,所以所求的概率为. 故选:B 【答案点睛】 本小题主要考查古典概型的计算,属于基础题. 5、B 【答案解析】 根据散点图呈现的特点可以看出,二者具有相关关系,且斜率小于1. 【题目详解】 散点图里变量的对应点分布在一条直线附近,且比较密集, 故可判断语文成绩和英语成绩之间具有较强的线性相关关系, 且直线斜率小于1,故选B. 【答案点睛】 本题主要考查散点图的理解,侧重考查读图识图能力和逻辑推理的核心素养. 6、D 【答案解析】 依次将选项中的代入,结合正弦、余弦函数的图象即可得到答案. 【题目详解】 当时,在上不单调,故A不正确; 当时,在上单调递减,故B不正确; 当时,在上不单调,故C不正确; 当时,在上单调递增,故D正确. 故选:D 【答案点睛】 本题考查正弦、余弦函数的单调性,涉及到诱导公式的应用,是一道容易题. 7、C 【答案解析】 ,将看成一个整体,结合的对称性即可得到答案. 【题目详解】 由已知,,令,得. 故选:C. 【答案点睛】 本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数的性质,是一道容易题. 8、D 【答案解析】 根据题意,分析该邮车到第站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案. 【题目详解】 解:根据题意,该邮车到第站时,一共装上了件邮件, 需要卸下件邮件, 则, 故选:D. 【答案点睛】 本题主要考查数列递推公式的应用,属于中档题. 9、C 【答案解析】 画出可行域和目标函数,根据平移得到最大值. 【题目详解】 若实数x,y满足条件,目标函数 如图: 当时函数取最大值为 故答案选C 【答案点睛】 求线性目标函数的最值: 当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小; 当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大. 10、C 【答案解析】 化简得到,,再计算复数模得到答案. 【题目详解】 ,故, 故,. 故选:. 【答案点睛】 本题考查了复数的化简,共轭复数,复数模,意在考查学生的计算能力. 11、A 【答案解析】 根据循环结构的运行,直至不满足条件退出循环体,求出的范围,利用几何概型概率公式,即可求出结论. 【题目详解】 程序框图共运行3次,输出的的范围是, 所以输出的不小于103的概率为. 故选:A. 【答案点睛】 本题考查循环结构输出结果、几何概型的概率,模拟程序运行是解题的关键,属于基础题. 12、C 【答案解析】 把代入,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可. 【题目详解】 ∵, ∴, ∵为纯虚数, ∴,解得. 故选C. 【答案点睛】 本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 设,由双曲线的定义得出:,由得为等腰三角形,设,根据,可求出,得出,再结合焦点三角形,利用余弦定理:求出和的关系,即可得出离心率. 【题目详解】 解:设, 由双曲线的定义得出: , , 由图可知:, 又, 即, 则, 为等腰三角形, , 设, ,则, , 即,解得:, 则, ,解得:, ,解得:, , 在中,由余弦定理得: , 即:, 解得: ,即. 故答案为:. 【答案点睛】 本题考查双曲线的定义的应用,以及余弦定理的应用,求双曲线离心率. 14

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开