温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
上海市
香山
中学
2023
学年
高考
全国
统考
预测
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.中国古典乐器一般按“八音”分类.这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为“金、石、土、革、丝、木、匏(páo)、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器.现从“八音”中任取不同的“两音”,则含有打击乐器的概率为( )
A. B. C. D.
2.已知复数z,则复数z的虚部为( )
A. B. C.i D.i
3.函数在上单调递减的充要条件是( )
A. B. C. D.
4. “纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是( )
A. B. C.10 D.
5.已知点(m,8)在幂函数的图象上,设,则( )
A.b<a<c B.a<b<c C.b<c<a D.a<c<b
6.已知函数,.若存在,使得成立,则的最大值为( )
A. B.
C. D.
7.已知椭圆的左、右焦点分别为,,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率
A. B.
C. D.
8.已知 ,,且是的充分不必要条件,则的取值范围是( )
A. B. C. D.
9.如图,在中,点为线段上靠近点的三等分点,点为线段上靠近点的三等分点,则( )
A. B. C. D.
10.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为
A. B. C. D.
11.函数的图象如图所示,为了得到的图象,可将的图象( )
A.向右平移个单位 B.向右平移个单位
C.向左平移个单位 D.向左平移个单位
12.设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.数列的前项和为 ,则数列的前项和_____.
14.如图,在一个倒置的高为2的圆锥形容器中,装有深度为的水,再放入一个半径为1的不锈钢制的实心半球后,半球的大圆面、水面均与容器口相平,则的值为____________.
15.已知实数满足则的最大值为________.
16.已知实数,满足约束条件则的最大值为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如表数据:
处罚金额(单位:元)
5
10
15
20
会闯红灯的人数
50
40
20
10
若用表中数据所得频率代替概率.
(1)当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?
(2)将选取的200人中会闯红灯的市民分为两类:类市民在罚金不超过10元时就会改正行为;类是其他市民.现对类与类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为类市民的概率是多少?
18.(12分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线和直线的极坐标方程;
(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.
19.(12分)已知,,为正数,且,证明:
(1);
(2).
20.(12分)已知函数()在定义域内有两个不同的极值点.
(1)求实数的取值范围;
(2)若有两个不同的极值点,,且,若不等式恒成立.求正实数的取值范围.
21.(12分)如图,在斜三棱柱中,已知为正三角形,D,E分别是,的中点,平面平面,.
(1)求证:平面;
(2)求证:平面.
22.(10分)(1)已知数列满足:,且(为非零常数,),求数列的前项和;
(2)已知数列满足:
(ⅰ)对任意的;
(ⅱ)对任意的,,且.
①若,求数列是等比数列的充要条件.
②求证:数列是等比数列,其中.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果.
【题目详解】
从“八音”中任取不同的“两音”共有种取法;
“两音”中含有打击乐器的取法共有种取法;
所求概率.
故选:.
【答案点睛】
本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.
2、B
【答案解析】
利用复数的运算法则、虚部的定义即可得出
【题目详解】
,
则复数z的虚部为.
故选:B.
【答案点睛】
本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.
3、C
【答案解析】
先求导函数,函数在上单调递减则恒成立,对导函数不等式换元成二次函数,结合二次函数的性质和图象,列不等式组求解可得.
【题目详解】
依题意,,
令,则,故在上恒成立;
结合图象可知,,解得
故.
故选:C.
【答案点睛】
本题考查求三角函数单调区间. 求三角函数单调区间的两种方法:
(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角(或),利用基本三角函数的单调性列不等式求解;
(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.
4、D
【答案解析】
直接根据几何概型公式计算得到答案.
【题目详解】
根据几何概型:,故.
故选:.
【答案点睛】
本题考查了根据几何概型求面积,意在考查学生的计算能力和应用能力.
5、B
【答案解析】
先利用幂函数的定义求出m的值,得到幂函数解析式为f(x)=x3,在R上单调递增,再利用幂函数f(x)的单调性,即可得到a,b,c的大小关系.
【题目详解】
由幂函数的定义可知,m﹣1=1,∴m=2,
∴点(2,8)在幂函数f(x)=xn上,
∴2n=8,∴n=3,
∴幂函数解析式为f(x)=x3,在R上单调递增,
∵,1<lnπ<3,n=3,
∴,
∴a<b<c,
故选:B.
【答案点睛】
本题主要考查了幂函数的性质,以及利用函数的单调性比较函数值大小,属于中档题.
6、C
【答案解析】
由题意可知,,由可得出,,利用导数可得出函数在区间上单调递增,函数在区间上单调递增,进而可得出,由此可得出,可得出,构造函数,利用导数求出函数在上的最大值即可得解.
【题目详解】
,,
由于,则,同理可知,,
函数的定义域为,对恒成立,所以,函数在区间上单调递增,同理可知,函数在区间上单调递增,
,则,,则,
构造函数,其中,则.
当时,,此时函数单调递增;当时,,此时函数单调递减.
所以,.
故选:C.
【答案点睛】
本题考查代数式最值的计算,涉及指对同构思想的应用,考查化归与转化思想的应用,有一定的难度.
7、B
【答案解析】
设,则,,
因为,所以.若,则,所以,
所以,不符合题意,所以,则,
所以,所以,,设,则,
在中,易得,所以,解得(负值舍去),
所以椭圆的离心率.故选B.
8、D
【答案解析】
“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.
【题目详解】
由题意知:可化简为,,
所以中变量取值的集合是中变量取值集合的真子集,所以.
【答案点睛】
利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.
9、B
【答案解析】
,将,代入化简即可.
【题目详解】
.
故选:B.
【答案点睛】
本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查学生的运算能力,是一道中档题.
10、B
【答案解析】
求得基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,利用古典概型及其概率的计算公式,即可求解.
【题目详解】
由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,
基本事件的总数为,
其中乙丙两人恰好参加同一项活动的基本事件个数为,
所以乙丙两人恰好参加同一项活动的概率为,故选B.
【答案点睛】
本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.
11、C
【答案解析】
根据正弦型函数的图象得到,结合图像变换知识得到答案.
【题目详解】
由图象知:,∴.
又时函数值最大,
所以.又,
∴,从而,,
只需将的图象向左平移个单位即可得到的图象,
故选C.
【答案点睛】
已知函数的图象求解析式
(1).(2)由函数的周期求
(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求.
12、D
【答案解析】
利用向量运算可得,即,由为的中位线,得到,所以,再根据双曲线定义即可求得离心率.
【题目详解】
取的中点,则由得,
即;
在中,为的中位线,
所以,
所以;
由双曲线定义知,且,所以,
解得,
故选:D
【答案点睛】
本题综合考查向量运算与双曲线的相关性质,难度一般.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
解: 两式作差,得 ,经过检验得出数列的通项公式,进而求得 的通项公式, 裂项相消求和即可.
【题目详解】
解:
两式作差,得
化简得 ,
检验:当n=1时, ,所以数列 是以2为首项,2为公比的等比数列; ,,
令
故填: .
【答案点睛】
本题考查求数列的通项公式,裂项相消求数列的前n项和,解题过程中需要注意n的范围以及对特殊项的讨论,侧重考查运算能力.
14、
【答案解析】
由已知可得到圆锥的底面半径,再由圆锥的体积等于半球的体积与水的体积之和即可建立方程.
【题目详解】
设圆锥的底面半径为,体积为,半球的体积为,水(小圆锥)的体积为,如图
则,所以,,解得,
所以,,,
由,得,解得.
故答案为:
【答案点睛】
本题考查圆锥的体积、球的体积的计算,考查学生空间想象能力与计算能力,是一道中档题.
15、
【答案解析】
直接利用柯西不等式得到答案.
【题目详解】
根据柯西不等式:,故,
当,即,时等号成立.
故答案为:.
【答案点睛】
本题考查了柯西不等式求最值,也可以利用均值不等式,三角换元求得答案.
16、1
【答案解析】
作出约束条件表示的可行域,转化目标函数为,当目标函数经过点时,直线的截距最大,取得最大值,即得解.
【题目详解】