北京市
丰台区
2023
学年
高考
冲刺
数学模拟
试题
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合.为自然数集,则下列表示不正确的是( )
A. B. C. D.
2.设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为( )
A. B. C. D.
3.已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是( )
A. B. C. D.
4.已知集合,,则的真子集个数为( )
A.1个 B.2个 C.3个 D.4个
5.已知等差数列中,,,则数列的前10项和( )
A.100 B.210 C.380 D.400
6.设等差数列的前项和为,若,则( )
A.23 B.25 C.28 D.29
7.某三棱锥的三视图如图所示,则该三棱锥的体积为
A. B. C.2 D.
8.设函数(,)是上的奇函数,若的图象关于直线对称,且在区间上是单调函数,则( )
A. B. C. D.
9.等比数列的各项均为正数,且,则( )
A.12 B.10 C.8 D.
10.已知双曲线()的渐近线方程为,则( )
A. B. C. D.
11.已知函数,则( )
A.函数在上单调递增 B.函数在上单调递减
C.函数图像关于对称 D.函数图像关于对称
12.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.设是公差不为0的等差数列的前n项和,且,则______.
14.如图,在中,已知,为边的中点.若,垂足为,则的值为__.
15.经过椭圆中心的直线与椭圆相交于、两点(点在第一象限),过点作轴的垂线,垂足为点.设直线与椭圆的另一个交点为.则的值是________________.
16.利用等面积法可以推导出在边长为a的正三角形内任意一点到三边的距离之和为定值,类比上述结论,利用等体积法进行推导,在棱长为a的正四面体内任意一点到四个面的距离之和也为定值,则这个定值是______
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知集合,.
(1)若,则;
(2)若,求实数的取值范围.
18.(12分)设为实数,已知函数,.
(1)当时,求函数的单调区间:
(2)设为实数,若不等式对任意的及任意的恒成立,求的取值范围;
(3)若函数(,)有两个相异的零点,求的取值范围.
19.(12分)在直角坐标系中,直线的参数方程是为参数),曲线的参数方程是为参数),以为极点,轴的非负半轴为极轴建立极坐标系.
(1)求直线和曲线的极坐标方程;
(2)已知射线与曲线交于两点,射线与直线交于点,若的面积为1,求的值和弦长.
20.(12分)如图,在四棱锥中,底面为矩形,侧面底面,为棱的中点,为棱上任意一点,且不与点、点重合..
(1)求证:平面平面;
(2)是否存在点使得平面与平面所成的角的余弦值为?若存在,求出点的位置;若不存在,请说明理由.
21.(12分)已知函数,曲线在点处的切线方程为.
(1)求,的值;
(2)证明函数存在唯一的极大值点,且.
22.(10分)已知为椭圆的左、右焦点,离心率为,点在椭圆上.
(1)求椭圆的方程;
(2)过的直线分别交椭圆于和,且,问是否存在常数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
集合.为自然数集,由此能求出结果.
【题目详解】
解:集合.为自然数集,
在A中,,正确;
在B中,,正确;
在C中,,正确;
在D中,不是的子集,故D错误.
故选:D.
【答案点睛】
本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题.
2、B
【答案解析】
由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率.
【题目详解】
如图,因为四边形为菱形,,所以为等边三角形,,两渐近线的斜率分别为和.
故选:B
【答案点睛】
此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题.
3、B
【答案解析】
命题p:,为,又为真命题的充分不必要条件为,故
4、C
【答案解析】
求出的元素,再确定其真子集个数.
【题目详解】
由,解得或,∴中有两个元素,因此它的真子集有3个.
故选:C.
【答案点睛】
本题考查集合的子集个数问题,解题时可先确定交集中集合的元素个数,解题关键是对集合元素的认识,本题中集合都是曲线上的点集.
5、B
【答案解析】
设公差为,由已知可得,进而求出的通项公式,即可求解.
【题目详解】
设公差为,,,
,
.
故选:B.
【答案点睛】
本题考查等差数列的基本量计算以及前项和,属于基础题.
6、D
【答案解析】
由可求,再求公差,再求解即可.
【题目详解】
解:是等差数列
,又,
公差为,
,
故选:D
【答案点睛】
考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.
7、A
【答案解析】
由给定的三视图可知,该几何体表示一个底面为一个直角三角形,
且两直角边分别为和,所以底面面积为
高为的三棱锥,所以三棱锥的体积为,故选A.
8、D
【答案解析】
根据函数为上的奇函数可得,由函数的对称轴及单调性即可确定的值,进而确定函数的解析式,即可求得的值.
【题目详解】
函数(,)是上的奇函数,
则,所以.
又的图象关于直线对称可得,,即,,
由函数的单调区间知,,
即,
综上,则,
.
故选:D
【答案点睛】
本题考查了三角函数的图象与性质的综合应用,由对称轴、奇偶性及单调性确定参数,属于中档题.
9、B
【答案解析】
由等比数列的性质求得,再由对数运算法则可得结论.
【题目详解】
∵数列是等比数列,∴,,
∴.
故选:B.
【答案点睛】
本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键.
10、A
【答案解析】
根据双曲线方程(),确定焦点位置,再根据渐近线方程得到求解.
【题目详解】
因为双曲线(),
所以,又因为渐近线方程为,
所以,
所以.
故选:A.
【答案点睛】
本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.
11、C
【答案解析】
依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性;
【题目详解】
解:由,
,所以函数图像关于对称,
又,在上不单调.
故正确的只有C,
故选:C
【答案点睛】
本题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题.
12、A
【答案解析】
详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,
且俯视图应为对称图形
故俯视图为
故选A.
点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。
二、填空题:本题共4小题,每小题5分,共20分。
13、18
【答案解析】
将已知已知转化为的形式,化简后求得,利用等差数列前公式化简,由此求得表达式的值.
【题目详解】
因为,所以.
故填:.
【答案点睛】
本题考查等差数列基本量的计算,考查等差数列的性质以及求和,考查运算求解能力,属于基础题.
14、
【答案解析】
,
由余弦定理,得,
得,,,
所以,所以.
点睛:本题考查平面向量的综合应用.本题中存在垂直关系,所以在线性表示的过程中充分利用垂直关系,得到,所以本题转化为求长度,利用余弦定理和面积公式求解即可.
15、
【答案解析】
作出图形,设点,则、,设点,利用点差法得出,利用斜率公式得出,进而可得出,可得出,由此可求得的值.
【题目详解】
设点,则、,设点,
则,两式相减得,即,
即,
由斜率公式得,,,故,
因此,.
故答案为:.
【答案点睛】
本题考查椭圆中角的余弦值的求解,涉及了点差法与斜率公式的应用,考查计算能力,属于中等题.
16、
【答案解析】
计算正四面体的高,并计算该正四面体的体积,利用等体积法,可得结果.
【题目详解】
作平面,为的重心
如图
则,
所以
设正四面体内任意一点到四个面的距离之和为
则
故答案为:
【答案点睛】
本题考查类比推理的应用,还考查等体积法,考验理解能力以及计算能力,属基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2)
【答案解析】
(1)将代入可得集合B,解对数不等式可得集合A,由并集运算即可得解.
(2)由可知B为A的子集,即;当符合题意,当B不为空集时,由不等式关系即可求得的取值范围.
【题目详解】
(1)若,则,
依题意,
故;
(2)因为,故;
若,即时,,符合题意;
若,即时,,
解得;
综上所述,实数的取值范围为.
【答案点睛】
本题考查了集合的并集运算,由集合的包含关系求参数的取值范围,注意讨论集合是否为空集的情况,属于基础题.
18、(1)函数单调减区间为;单调增区间为.(2)(3)
【答案解析】
(1)据导数和函数单调性的关系即可求出;
(2)分离参数,可得对任意的及任意的恒成立,构造函数,利用导数求出函数的最值即可求出的范围;
(3)先求导,再分类讨论,根据导数和函数单调性以及最值得关系即可求出的范围
【题目详解】
解:(1)当时,因为,当时,;
当时,.所以函数单调减区间为;单调增区间为.
(2)由,得,由于,
所以对任意的及任意的恒成立,
由于,所以,所以对任意的恒成立,
设,,
则,所以函数在上单调递减,在上单调递增,
所以,
所以.
(3)由,得,其中.
①若时,则,所以函数在上单调递增,所以函数至多有一个零点,不合题意;
②若时,令,得.
由第(2)小题,知:当时,,所以,所以,所以当时,函数的值域为.
所以,存在,使得,即, ①
且当时,,所以函数在上单调递增,在上单调递减.因为函数有两个零点,,
所以.②
设,,则,所以函数在单调递增,由于,所以当时,.所以,②式中的,
又由①式,得.
由第(1)小题可知,当时,函数在上单调递减,所以,
即.
当时,
(ⅰ)由于,所以得,又因为,且函数在上单调递减,函数的图象在上不间断,所以函数在上恰有一个零点;
(ⅱ)由于,令,
设,,
由于时,,,所以