2023
黑龙江省
绥化市
重点中学
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“- ”当作数字“1”,把阴爻“--”当作数字“0”,则八卦所代表的数表示如下:
卦名
符号
表示的二进制数
表示的十进制数
坤
000
0
震
001
1
坎
010
2
兑
011
3
依此类推,则六十四卦中的“屯”卦,符号“ ”表示的十进制数是( )
A.18 B.17 C.16 D.15
2.若复数在复平面内对应的点在第二象限,则实数的取值范围是( )
A. B. C. D.
3.设,是方程的两个不等实数根,记().下列两个命题( )
①数列的任意一项都是正整数;
②数列存在某一项是5的倍数.
A.①正确,②错误 B.①错误,②正确
C.①②都正确 D.①②都错误
4.已知六棱锥各顶点都在同一个球(记为球)的球面上,且底面为正六边形,顶点在底面上的射影是正六边形的中心,若,,则球的表面积为( )
A. B. C. D.
5.百年双中的校训是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味运动会中有这样的一个小游戏.袋子中有大小、形状完全相同的四个小球,分别写有“仁”、“智”、“雅”、“和”四个字,有放回地从中任意摸出一个小球,直到“仁”、“智”两个字都摸到就停止摸球.小明同学用随机模拟的方法恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“仁”、“智”、“雅”、“和”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数:
141 432 341 342 234 142 243 331 112 322
342 241 244 431 233 214 344 142 134 412
由此可以估计,恰好第三次就停止摸球的概率为( )
A. B. C. D.
6.已知直线,,则“”是“”的
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
7.椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是( )
A. B. C. D.
8.已知函数,若关于的方程有且只有一个实数根,则实数的取值范围是( )
A. B.
C. D.
9.已知函数,当时,恒成立,则的取值范围为( )
A. B. C. D.
10.盒中有6个小球,其中4个白球,2个黑球,从中任取个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则( )
A., B.,
C., D.,
11.定义在上的函数满足,则()
A.-1 B.0 C.1 D.2
12.过椭圆的左焦点的直线过的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.的展开式中二项式系数最大的项的系数为_________(用数字作答).
14.设为偶函数,且当时,;当时,.关于函数的零点,有下列三个命题:
①当时,存在实数m,使函数恰有5个不同的零点;
②若,函数的零点不超过4个,则;
③对,,函数恰有4个不同的零点,且这4个零点可以组成等差数列.
其中,正确命题的序号是_______.
15.已知为双曲线:的左焦点,直线经过点,若点,关于直线对称,则双曲线的离心率为__________.
16.已知抛物线的焦点为,斜率为2的直线与的交点为,若,则直线的方程为___________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在中,内角所对的边分别为,已知,且.
(I)求角的大小;
(Ⅱ)若,求面积的取值范围.
18.(12分)已知函数
(1)解不等式;
(2)若均为正实数,且满足,为的最小值,求证:.
19.(12分)已知函数.
(Ⅰ)求的值;
(Ⅱ)若,且,求的值.
20.(12分)已知中,内角所对边分别是其中.
(1)若角为锐角,且,求的值;
(2)设,求的取值范围.
21.(12分)设椭圆:的右焦点为,右顶点为,已知椭圆离心率为,过点且与轴垂直的直线被椭圆截得的线段长为3.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线斜率的取值范围.
22.(10分)已知函数,.
(1)当时,求不等式的解集;
(2)当时,不等式恒成立,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
由题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可.
【题目详解】
由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为1×20+1×24=1.
故选:B.
【答案点睛】
本题主要考查数制是转化,新定义知识的应用等,意在考查学生的转化能力和计算求解能力.
2、B
【答案解析】
复数,在复平面内对应的点在第二象限,可得关于a的不等式组,解得a的范围.
【题目详解】
,
由其在复平面对应的点在第二象限,
得,则.
故选:B.
【答案点睛】
本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.
3、A
【答案解析】
利用韦达定理可得,,结合可推出,再计算出,,从而推出①正确;再利用递推公式依次计算数列中的各项,以此判断②的正误.
【题目详解】
因为,是方程的两个不等实数根,
所以,,
因为,
所以
,
即当时,数列中的任一项都等于其前两项之和,
又,,
所以,,,
以此类推,即可知数列的任意一项都是正整数,故①正确;
若数列存在某一项是5的倍数,则此项个位数字应当为0或5,
由,,依次计算可知,
数列中各项的个位数字以1,3,4,7,1,8,9,7,6,3,9,2为周期,
故数列中不存在个位数字为0或5的项,故②错误;
故选:A.
【答案点睛】
本题主要考查数列递推公式的推导,考查数列性质的应用,考查学生的综合分析以及计算能力.
4、D
【答案解析】
由题意,得出六棱锥为正六棱锥,求得,再结合球的性质,求得球的半径,利用表面积公式,即可求解.
【题目详解】
由题意,六棱锥底面为正六边形,顶点在底面上的射影是正六边形的中心,可得此六棱锥为正六棱锥,
又由,所以,
在直角中,因为,所以,
设外接球的半径为,
在中,可得,即,解得,
所以外接球的表面积为.
故选:D.
【答案点睛】
本题主要考查了正棱锥的几何结构特征,以及外接球的表面积的计算,其中解答中熟记几何体的结构特征,熟练应用球的性质求得球的半径是解答的关键,着重考查了空间想象能力,以及推理与计算能力,属于中档试题.
5、A
【答案解析】
由题意找出满足恰好第三次就停止摸球的情况,用满足恰好第三次就停止摸球的情况数比20即可得解.
【题目详解】
由题意可知当1,2同时出现时即停止摸球,则满足恰好第三次就停止摸球的情况共有五种:142,112,241,142,412.
则恰好第三次就停止摸球的概率为.
故选:A.
【答案点睛】
本题考查了简单随机抽样中随机数的应用和古典概型概率的计算,属于基础题.
6、C
【答案解析】
先得出两直线平行的充要条件,根据小范围可推导出大范围,可得到答案.
【题目详解】
直线,,的充要条件是,当a=2时,化简后发现两直线是重合的,故舍去,最终a=-1.因此得到“”是“”的充分必要条件.
故答案为C.
【答案点睛】
判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
7、C
【答案解析】
根据题意可知当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大,由椭圆的几何性质即可确定此时椭圆的离心率,进而确定离心率的取值范围.
【题目详解】
当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大.
此时椭圆长轴长为,短轴长为6,
所以椭圆离心率,
所以.
故选:C
【答案点睛】
本题考查了橢圆的定义及其性质的简单应用,属于基础题.
8、B
【答案解析】
利用换元法设,则等价为有且只有一个实数根,分 三种情况进行讨论,结合函数的图象,求出的取值范围.
【题目详解】
解:设 ,则有且只有一个实数根.
当 时,当 时, ,由即,解得,
结合图象可知,此时当时,得 ,则 是唯一解,满足题意;
当时,此时当时,,此时函数有无数个零点,不符合题意;
当 时,当 时,,此时 最小值为 ,
结合图象可知,要使得关于的方程有且只有一个实数根,此时 .
综上所述: 或.
故选:A.
【答案点睛】
本题考查了函数方程根的个数的应用.利用换元法,数形结合是解决本题的关键.
9、A
【答案解析】
分析可得,显然在上恒成立,只需讨论时的情况即可,,然后构造函数,结合的单调性,不等式等价于,进而求得的取值范围即可.
【题目详解】
由题意,若,显然不是恒大于零,故.
,则在上恒成立;
当时,等价于,
因为,所以.
设,由,显然在上单调递增,
因为,所以等价于,即,则.
设,则.
令,解得,易得在上单调递增,在上单调递减,
从而,故.
故选:A.
【答案点睛】
本题考查了不等式恒成立问题,利用函数单调性是解决本题的关键,考查了学生的推理能力,属于基础题.
10、C
【答案解析】
根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项.
【题目详解】
表示取出的为一个白球,所以.表示取出一个黑球,,所以.
表示取出两个球,其中一黑一白,,表示取出两个球为黑球,,表示取出两个球为白球,,所以.所以,.
故选:C
【答案点睛】
本小题主要考查离散型随机变量分布列和数学期望