分享
2023届黑龙江省绥化市重点中学高考数学三模试卷(含解析).doc
下载文档

ID:20891

大小:1.83MB

页数:22页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 黑龙江省 绥化市 重点中学 高考 数学 试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“- ”当作数字“1”,把阴爻“--”当作数字“0”,则八卦所代表的数表示如下: 卦名 符号 表示的二进制数 表示的十进制数 坤 000 0 震 001 1 坎 010 2 兑 011 3 依此类推,则六十四卦中的“屯”卦,符号“ ”表示的十进制数是( ) A.18 B.17 C.16 D.15 2.若复数在复平面内对应的点在第二象限,则实数的取值范围是( ) A. B. C. D. 3.设,是方程的两个不等实数根,记().下列两个命题( ) ①数列的任意一项都是正整数; ②数列存在某一项是5的倍数. A.①正确,②错误 B.①错误,②正确 C.①②都正确 D.①②都错误 4.已知六棱锥各顶点都在同一个球(记为球)的球面上,且底面为正六边形,顶点在底面上的射影是正六边形的中心,若,,则球的表面积为( ) A. B. C. D. 5.百年双中的校训是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味运动会中有这样的一个小游戏.袋子中有大小、形状完全相同的四个小球,分别写有“仁”、“智”、“雅”、“和”四个字,有放回地从中任意摸出一个小球,直到“仁”、“智”两个字都摸到就停止摸球.小明同学用随机模拟的方法恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“仁”、“智”、“雅”、“和”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数: 141 432 341 342 234 142 243 331 112 322 342 241 244 431 233 214 344 142 134 412 由此可以估计,恰好第三次就停止摸球的概率为( ) A. B. C. D. 6.已知直线,,则“”是“”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 7.椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是( ) A. B. C. D. 8.已知函数,若关于的方程有且只有一个实数根,则实数的取值范围是( ) A. B. C. D. 9.已知函数,当时,恒成立,则的取值范围为( ) A. B. C. D. 10.盒中有6个小球,其中4个白球,2个黑球,从中任取个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则( ) A., B., C., D., 11.定义在上的函数满足,则() A.-1 B.0 C.1 D.2 12.过椭圆的左焦点的直线过的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.的展开式中二项式系数最大的项的系数为_________(用数字作答). 14.设为偶函数,且当时,;当时,.关于函数的零点,有下列三个命题: ①当时,存在实数m,使函数恰有5个不同的零点; ②若,函数的零点不超过4个,则; ③对,,函数恰有4个不同的零点,且这4个零点可以组成等差数列. 其中,正确命题的序号是_______. 15.已知为双曲线:的左焦点,直线经过点,若点,关于直线对称,则双曲线的离心率为__________. 16.已知抛物线的焦点为,斜率为2的直线与的交点为,若,则直线的方程为___________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)在中,内角所对的边分别为,已知,且. (I)求角的大小; (Ⅱ)若,求面积的取值范围. 18.(12分)已知函数 (1)解不等式; (2)若均为正实数,且满足,为的最小值,求证:. 19.(12分)已知函数. (Ⅰ)求的值; (Ⅱ)若,且,求的值. 20.(12分)已知中,内角所对边分别是其中. (1)若角为锐角,且,求的值; (2)设,求的取值范围. 21.(12分)设椭圆:的右焦点为,右顶点为,已知椭圆离心率为,过点且与轴垂直的直线被椭圆截得的线段长为3. (Ⅰ)求椭圆的方程; (Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线斜率的取值范围. 22.(10分)已知函数,. (1)当时,求不等式的解集; (2)当时,不等式恒成立,求实数的取值范围. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 由题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可. 【题目详解】 由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为1×20+1×24=1. 故选:B. 【答案点睛】 本题主要考查数制是转化,新定义知识的应用等,意在考查学生的转化能力和计算求解能力. 2、B 【答案解析】 复数,在复平面内对应的点在第二象限,可得关于a的不等式组,解得a的范围. 【题目详解】 , 由其在复平面对应的点在第二象限, 得,则. 故选:B. 【答案点睛】 本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题. 3、A 【答案解析】 利用韦达定理可得,,结合可推出,再计算出,,从而推出①正确;再利用递推公式依次计算数列中的各项,以此判断②的正误. 【题目详解】 因为,是方程的两个不等实数根, 所以,, 因为, 所以 , 即当时,数列中的任一项都等于其前两项之和, 又,, 所以,,, 以此类推,即可知数列的任意一项都是正整数,故①正确; 若数列存在某一项是5的倍数,则此项个位数字应当为0或5, 由,,依次计算可知, 数列中各项的个位数字以1,3,4,7,1,8,9,7,6,3,9,2为周期, 故数列中不存在个位数字为0或5的项,故②错误; 故选:A. 【答案点睛】 本题主要考查数列递推公式的推导,考查数列性质的应用,考查学生的综合分析以及计算能力. 4、D 【答案解析】 由题意,得出六棱锥为正六棱锥,求得,再结合球的性质,求得球的半径,利用表面积公式,即可求解. 【题目详解】 由题意,六棱锥底面为正六边形,顶点在底面上的射影是正六边形的中心,可得此六棱锥为正六棱锥, 又由,所以, 在直角中,因为,所以, 设外接球的半径为, 在中,可得,即,解得, 所以外接球的表面积为. 故选:D. 【答案点睛】 本题主要考查了正棱锥的几何结构特征,以及外接球的表面积的计算,其中解答中熟记几何体的结构特征,熟练应用球的性质求得球的半径是解答的关键,着重考查了空间想象能力,以及推理与计算能力,属于中档试题. 5、A 【答案解析】 由题意找出满足恰好第三次就停止摸球的情况,用满足恰好第三次就停止摸球的情况数比20即可得解. 【题目详解】 由题意可知当1,2同时出现时即停止摸球,则满足恰好第三次就停止摸球的情况共有五种:142,112,241,142,412. 则恰好第三次就停止摸球的概率为. 故选:A. 【答案点睛】 本题考查了简单随机抽样中随机数的应用和古典概型概率的计算,属于基础题. 6、C 【答案解析】 先得出两直线平行的充要条件,根据小范围可推导出大范围,可得到答案. 【题目详解】 直线,,的充要条件是,当a=2时,化简后发现两直线是重合的,故舍去,最终a=-1.因此得到“”是“”的充分必要条件. 故答案为C. 【答案点睛】 判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系. 7、C 【答案解析】 根据题意可知当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大,由椭圆的几何性质即可确定此时椭圆的离心率,进而确定离心率的取值范围. 【题目详解】 当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大. 此时椭圆长轴长为,短轴长为6, 所以椭圆离心率, 所以. 故选:C 【答案点睛】 本题考查了橢圆的定义及其性质的简单应用,属于基础题. 8、B 【答案解析】 利用换元法设,则等价为有且只有一个实数根,分 三种情况进行讨论,结合函数的图象,求出的取值范围. 【题目详解】 解:设 ,则有且只有一个实数根. 当 时,当 时, ,由即,解得, 结合图象可知,此时当时,得 ,则 是唯一解,满足题意; 当时,此时当时,,此时函数有无数个零点,不符合题意; 当 时,当 时,,此时 最小值为 , 结合图象可知,要使得关于的方程有且只有一个实数根,此时 . 综上所述: 或. 故选:A. 【答案点睛】 本题考查了函数方程根的个数的应用.利用换元法,数形结合是解决本题的关键. 9、A 【答案解析】 分析可得,显然在上恒成立,只需讨论时的情况即可,,然后构造函数,结合的单调性,不等式等价于,进而求得的取值范围即可. 【题目详解】 由题意,若,显然不是恒大于零,故. ,则在上恒成立; 当时,等价于, 因为,所以. 设,由,显然在上单调递增, 因为,所以等价于,即,则. 设,则. 令,解得,易得在上单调递增,在上单调递减, 从而,故. 故选:A. 【答案点睛】 本题考查了不等式恒成立问题,利用函数单调性是解决本题的关键,考查了学生的推理能力,属于基础题. 10、C 【答案解析】 根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项. 【题目详解】 表示取出的为一个白球,所以.表示取出一个黑球,,所以. 表示取出两个球,其中一黑一白,,表示取出两个球为黑球,,表示取出两个球为白球,,所以.所以,. 故选:C 【答案点睛】 本小题主要考查离散型随机变量分布列和数学期望

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开