温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
北京市
十三
2023
学年
高考
仿真
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线的右焦点为,过的直线交双曲线的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为( )
A. B. C. D.
2.某人用随机模拟的方法估计无理数的值,做法如下:首先在平面直角坐标系中,过点作轴的垂线与曲线相交于点,过作轴的垂线与轴相交于点(如图),然后向矩形内投入粒豆子,并统计出这些豆子在曲线上方的有粒,则无理数的估计值是( )
A. B. C. D.
3.若复数满足(是虚数单位),则( )
A. B. C. D.
4.设等比数列的前项和为,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
5.已知椭圆的左、右焦点分别为,,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率
A. B.
C. D.
6.已知函数,则在上不单调的一个充分不必要条件可以是( )
A. B. C.或 D.
7.设全集为R,集合,,则
A. B. C. D.
8.已知△ABC中,.点P为BC边上的动点,则的最小值为( )
A.2 B. C. D.
9.从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:
根据频率分布直方图,可知这部分男生的身高的中位数的估计值为
A. B.
C. D.
10.已知复数满足,则的共轭复数是( )
A. B. C. D.
11.公比为2的等比数列中存在两项,,满足,则的最小值为( )
A. B. C. D.
12.一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是( )
A.16 B.12 C.8 D.6
二、填空题:本题共4小题,每小题5分,共20分。
13.某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1 000名学生的成绩,并根据这1 000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[250,400)内的学生共有____人.
14.已知向量,,若满足,且方向相同,则__________.
15.在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥为阳马,侧棱底面,且,,设该阳马的外接球半径为,内切球半径为,则__________.
16.记为数列的前项和,若,则__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知是递增的等比数列,,且、、成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,,求数列的前项和.
18.(12分)如图所示,在四面体中,,平面平面,,且.
(1)证明:平面;
(2)设为棱的中点,当四面体的体积取得最大值时,求二面角的余弦值.
19.(12分)如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形,在上,且面.
(1)求证: 是的中点;
(2)在上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由.
20.(12分)已知函数.
(1)求不等式的解集;
(2)若正数、满足,求证:.
21.(12分)中国古代数学经典《数书九章》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,,,以的中点O为球心,AC为直径的球面交PD于M(异于点D),交PC于N(异于点C).
(1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;
(2)求直线与平面所成角的正弦值.
22.(10分)已知函数.
(1)当时,求函数的值域;
(2)的角的对边分别为且,,求边上的高的最大值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
先求出直线l的方程为y(x﹣c),与y=±x联立,可得A,B的纵坐标,利用,求出a,b的关系,即可求出该双曲线的离心率.
【题目详解】
双曲线1(a>b>0)的渐近线方程为y=±x,
∵直线l的倾斜角是渐近线OA倾斜角的2倍,
∴kl,
∴直线l的方程为y(x﹣c),
与y=±x联立,可得y或y,
∵,
∴2•,
∴ab,
∴c=2b,
∴e.
故选B.
【答案点睛】
本题考查双曲线的简单性质,考查向量知识,考查学生的计算能力,属于中档题.
2、D
【答案解析】
利用定积分计算出矩形中位于曲线上方区域的面积,进而利用几何概型的概率公式得出关于的等式,解出的表达式即可.
【题目详解】
在函数的解析式中,令,可得,则点,直线的方程为,
矩形中位于曲线上方区域的面积为,
矩形的面积为,
由几何概型的概率公式得,所以,.
故选:D.
【答案点睛】
本题考查利用随机模拟的思想估算的值,考查了几何概型概率公式的应用,同时也考查了利用定积分计算平面区域的面积,考查计算能力,属于中等题.
3、B
【答案解析】
利用复数乘法运算化简,由此求得.
【题目详解】
依题意,所以.
故选:B
【答案点睛】
本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.
4、C
【答案解析】
根据等比数列的前项和公式,判断出正确选项.
【题目详解】
由于数列是等比数列,所以,由于,所以
,故“”是“”的充分必要条件.
故选:C
【答案点睛】
本小题主要考查充分、必要条件的判断,考查等比数列前项和公式,属于基础题.
5、B
【答案解析】
设,则,,
因为,所以.若,则,所以,
所以,不符合题意,所以,则,
所以,所以,,设,则,
在中,易得,所以,解得(负值舍去),
所以椭圆的离心率.故选B.
6、D
【答案解析】
先求函数在上不单调的充要条件,即在上有解,即可得出结论.
【题目详解】
,
若在上不单调,令,
则函数对称轴方程为
在区间上有零点(可以用二分法求得).
当时,显然不成立;
当时,只需
或,解得或.
故选:D.
【答案点睛】
本题考查含参数的函数的单调性及充分不必要条件,要注意二次函数零点的求法,属于中档题.
7、B
【答案解析】
分析:由题意首先求得,然后进行交集运算即可求得最终结果.
详解:由题意可得:,
结合交集的定义可得:.
本题选择B选项.
点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.
8、D
【答案解析】
以BC的中点为坐标原点,建立直角坐标系,可得,设,运用向量的坐标表示,求得点A的轨迹,进而得到关于a的二次函数,可得最小值.
【题目详解】
以BC的中点为坐标原点,建立如图的直角坐标系,
可得,设,
由,
可得,即,
则
,
当时,的最小值为.
故选D.
【答案点睛】
本题考查向量数量积的坐标表示,考查转化思想和二次函数的值域解法,考查运算能力,属于中档题.
9、C
【答案解析】
由题可得,解得,
则,,
所以这部分男生的身高的中位数的估计值为,故选C.
10、B
【答案解析】
根据复数的除法运算法则和共轭复数的定义直接求解即可.
【题目详解】
由,得,所以.
故选:B
【答案点睛】
本题考查了复数的除法的运算法则,考查了复数的共轭复数的定义,属于基础题.
11、D
【答案解析】
根据已知条件和等比数列的通项公式,求出关系,即可求解.
【题目详解】
,
当时,,当时,,
当时,,当时,,
当时,,当时,,
最小值为.
故选:D.
【答案点睛】
本题考查等比数列通项公式,注意为正整数,如用基本不等式要注意能否取到等号,属于基础题.
12、B
【答案解析】
根据正三棱柱的主视图,以及长度,可知该几何体的底面正三角形的边长,然后根据矩形的面积公式,可得结果.
【题目详解】
由题可知:该几何体的底面正三角形的边长为2
所以该正三棱柱的三个侧面均为边长为2的正方形,
所以该正三棱柱的侧面积为
故选:B
【答案点睛】
本题考查正三棱柱侧面积的计算以及三视图的认识,关键在于求得底面正三角形的边长,掌握一些常见的几何体的三视图,比如:三棱锥,圆锥,圆柱等,属基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、750
【答案解析】因为,得,
所以。
14、
【答案解析】
由向量平行坐标表示计算.注意验证两向量方向是否相同.
【题目详解】
∵,∴,解得或,
时,满足题意,
时,,方向相反,不合题意,舍去.
∴.
故答案为:1.
【答案点睛】
本题考查向量平行的坐标运算,解题时要注意验证方向相同这个条件,否则会出错.
15、
【答案解析】
该阳马补形所得到的长方体的对角线为外接球的直径,由此能求出,内切球在侧面内的正视图是的内切圆,从而内切球半径为,由此能求出.
【题目详解】
四棱锥为阳马,侧棱底面,
且,,设该阳马的外接球半径为,
该阳马补形所得到的长方体的对角线为外接球的直径,
,
,
侧棱底面,且底面为正方形,
内切球在侧面内的正视图是的内切圆,
内切球半径为,
故.
故答案为.
【答案点睛】
本题考查了几何体外接球和内切球的相关问题,补形法的运用,以及数学文化,考查了空间想象能力,是中档题.解决球与其他几何体的切、接问题,关键是能够确定球心位置,以及选择恰当的角度做出截面.球心位置的确定的方法有很多,主要有两种:(1)补形法(构造法),通过补形为长方体(正方体),球心位置即为体对角线的中点;(2)外心垂线法,先找出几何体中不共线三点构成的三角形的外心,再找出过外心且与不共线三点确定的平面垂直的垂线,则球心一定在垂线上.
16、-254
【答案解析】
利用代入即可得到,即是等比数列,再利用等比数列的通项公式计算即可.
【题目详解】
由已知,得,即,所以
又,即,,所以是以-4为首项,2为公比的等比数
列,所以,即,所以。
故答案为:
【答案点睛】
本题考查已知与的关系求,考查学生的数学运算求解能力,是一道中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(Ⅰ);(Ⅱ).
【答案解析】
(Ⅰ)设等比数列的公比为,根据题中条件求出的值,结合等比数列的通项公式可得出数列的通项公式;
(Ⅱ)求得,然后利用裂项相消法可求得.
【题目详解】
(Ⅰ)设数列的公比为,由题意及,知.
、、成等差数列成等差数列,,,
即,解得或(舍去),.
数列的通项公式为;
(Ⅱ),
.
【答案点睛】
本题考查等比数列通项的求解,同时也考查了裂项求和法,考查计算能力,属于基础题.
18、(1)见证明;(2)
【答案解析】
(1)根据面面垂直的性质得到平面,从而得到,利用勾股定理得到,利用线面垂直的判定定理证得平面;
(2)设,利用椎体的体积公式求得 ,利用导数研究函数的单调性,从而求得时,四面体的体积取得最大值,之后利用空间向量求得二面角的余弦值.
【题目详解】
(1)证明:因为,平面平面,
平面平面,平面,
所以平面,
因为