温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
辽宁省
沈阳市
第一
中学
高考
冲刺
押题
最后
一卷
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,满足,且的最大值是最小值的4倍,则的值是( )
A.4 B. C. D.
2.将函数图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移个单位长度,则所得函数图象的一个对称中心为( )
A. B. C. D.
3.对于函数,若满足,则称为函数的一对“线性对称点”.若实数与和与为函数的两对“线性对称点”,则的最大值为( )
A. B. C. D.
4.已知函数,,若成立,则的最小值是( )
A. B. C. D.
5. “纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是( )
A. B. C.10 D.
6.四人并排坐在连号的四个座位上,其中与不相邻的所有不同的坐法种数是( )
A.12 B.16 C.20 D.8
7.已知变量,满足不等式组,则的最小值为( )
A. B. C. D.
8.已知抛物线:,直线与分别相交于点,与的准线相交于点,若,则( )
A.3 B. C. D.
9.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )
A.56 B.60 C.140 D.120
10. 的内角的对边分别为,已知,则角的大小为( )
A. B. C. D.
11.函数的对称轴不可能为( )
A. B. C. D.
12.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在,内的学生人数为( )
A.800 B.1000 C.1200 D.1600
二、填空题:本题共4小题,每小题5分,共20分。
13.已知非零向量,满足,且,则与的夹角为____________.
14.函数的最大值与最小正周期相同,则在上的单调递增区间为______.
15.已知函数,则曲线在点处的切线方程为___________.
16.的展开式中常数项是___________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知为坐标原点,单位圆与角终边的交点为,过作平行于轴的直线,设与终边所在直线的交点为,.
(1)求函数的最小正周期;
(2)求函数在区间上的值域.
18.(12分)已知的内角,,的对边分别为,,,.
(1)若,证明:.
(2)若,,求的面积.
19.(12分)设椭圆:的左、右焦点分别为,,下顶点为,椭圆的离心率是,的面积是.
(1)求椭圆的标准方程.
(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.
20.(12分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100 人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.
(1)估计这100人体重数据的平均值和样本方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)
(2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;
(3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.
21.(12分)在如图所示的四棱锥中,四边形是等腰梯形,,,平面,,.
(1)求证:平面;
(2)已知二面角的余弦值为,求直线与平面所成角的正弦值.
22.(10分)如图,四棱锥中,底面为直角梯形,∥,为等边三角形,平面底面,为的中点.
(1)求证:平面平面;
(2)点在线段上,且,求平面与平面所成的锐二面角的余弦值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.
考点:线性规划.
2、D
【答案解析】
先化简函数解析式,再根据函数的图象变换规律,可得所求函数的解析式为,再由正弦函数的对称性得解.
【题目详解】
,
将函数图象上各点的横坐标伸长到原来的3倍,所得函数的解析式为
,
再向右平移个单位长度,所得函数的解析式为
,
,
可得函数图象的一个对称中心为,故选D.
【答案点睛】
三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些问题中进行体现,在复习时要注意基础知识的理解与落实.三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.
3、D
【答案解析】
根据已知有,可得,只需求出的最小值,根据
,利用基本不等式,得到的最小值,即可得出结论.
【题目详解】
依题意知,与为函数的“线性对称点”,
所以,
故(当且仅当时取等号).
又与为函数的“线性对称点,
所以,
所以,
从而的最大值为.
故选:D.
【答案点睛】
本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出的表达式是解题的关键,属于中档题.
4、A
【答案解析】
分析:设,则,把用表示,然后令,由导数求得的最小值.
详解:设,则,,,
∴,令,
则,,∴是上的增函数,
又,∴当时,,当时,,
即在上单调递减,在上单调递增,是极小值也是最小值,
,∴的最小值是.
故选A.
点睛:本题易错选B,利用导数法求函数的最值,解题时学生可能不会将其中求的最小值问题,通过构造新函数,转化为求函数的最小值问题,另外通过二次求导,确定函数的单调区间也很容易出错.
5、D
【答案解析】
直接根据几何概型公式计算得到答案.
【题目详解】
根据几何概型:,故.
故选:.
【答案点睛】
本题考查了根据几何概型求面积,意在考查学生的计算能力和应用能力.
6、A
【答案解析】
先将除A,B以外的两人先排,再将A,B在3个空位置里进行插空,再相乘得答案.
【题目详解】
先将除A,B以外的两人先排,有种;再将A,B在3个空位置里进行插空,有种,所以共有种.
故选:A
【答案点睛】
本题考查排列中不相邻问题,常用插空法,属于基础题.
7、B
【答案解析】
先根据约束条件画出可行域,再利用几何意义求最值.
【题目详解】
解:由变量,满足不等式组,画出相应图形如下:
可知点,,
在处有最小值,最小值为.
故选:B.
【答案点睛】
本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.
8、C
【答案解析】
根据抛物线的定义以及三角形的中位线,斜率的定义表示即可求得答案.
【题目详解】
显然直线过抛物线的焦点
如图,过A,M作准线的垂直,垂足分别为C,D,过M作AC的垂线,垂足为E
根据抛物线的定义可知MD=MF,AC=AF,又AM=MN,所以M为AN的中点,所以MD为三角形NAC的中位线,故MD=CE=EA=AC
设MF=t,则MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=
所以
故选:C
【答案点睛】
本题考查求抛物线的焦点弦的斜率,常见于利用抛物线的定义构建关系,属于中档题.
9、C
【答案解析】
试题分析:由题意得,自习时间不少于小时的频率为,故自习时间不少于小时的频率为,故选C.
考点:频率分布直方图及其应用.
10、A
【答案解析】
先利用正弦定理将边统一化为角,然后利用三角函数公式化简,可求出解B.
【题目详解】
由正弦定理可得,即,即有,因为,则,而,所以.
故选:A
【答案点睛】
此题考查了正弦定理和三角函数的恒等变形,属于基础题.
11、D
【答案解析】
由条件利用余弦函数的图象的对称性,得出结论.
【题目详解】
对于函数,令,解得,
当时,函数的对称轴为,,.
故选:D.
【答案点睛】
本题主要考查余弦函数的图象的对称性,属于基础题.
12、B
【答案解析】
由图可列方程算得a,然后求出成绩在内的频率,最后根据频数=总数×频率可以求得成绩在内的学生人数.
【题目详解】
由频率和为1,得,解得,
所以成绩在内的频率,
所以成绩在内的学生人数.
故选:B
【答案点睛】
本题主要考查频率直方图的应用,属基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、(或写成)
【答案解析】
设与的夹角为,通过,可得,化简整理可求出,从而得到答案.
【题目详解】
设与的夹角为
可得,
故,将代入可得
得到,
于是与的夹角为.
故答案为:.
【答案点睛】
本题主要考查向量的数量积运算,向量垂直转化为数量积为0是解决本题的关键,意在考查学生的转化能力,分析能力及计算能力.
14、
【答案解析】
利用三角函数的辅助角公式进行化简,求出函数的解析式,结合三角函数的单调性进行求解即可.
【题目详解】
∵
,
则函数的最大值为2,周期,
的最大值与最小正周期相同,
,得,
则,
当时,,
则当时,得,
即函数在,上的单调递增区间为,
故答案为:.
【答案点睛】
本题考查三角函数的性质、单调区间,利用辅助角公式求出函数的解析式是解决本题的关键,同时要注意单调区间为定义域的一个子区间.
15、
【答案解析】
根据导数的几何意义求出切线的斜率,利用点斜式求切线方程.
【题目详解】
因为,
所以,
又
故切线方程为,
整理为,
故答案为:
【答案点睛】
本题主要考查了导数的几何意义,切线方程,属于容易题.
16、-160
【答案解析】
试题分析:常数项为.
考点:二项展开式系数问题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2).
【答案解析】
(1)根据题意,求得,,因而得出,利用降幂公式和二倍角的正弦公式化简函数,最后利用,求出的最小正周期;
(2)由(1)得,再利用整体代入求出函数的值域.
【题目详解】
(1) 因为 , ,
所以,
,
所以函数的最小正周期为.
(2)因为,所以
,
所以,
故函数在区间上的值域为.
【答案点睛】
本题考查正弦型函数的周期和值域,运用到向量的坐标运算、降幂公式和二倍角的正弦公式,考查化简和计算能力.
18、(1)见解析(2)
【答案解析