分享
2023届维吾尔自治区和田地区高考仿真卷数学试题(含解析).doc
下载文档

ID:20830

大小:3.04MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 维吾尔 自治区 和田 地区 高考 仿真 数学试题 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设双曲线(a>0,b>0)的一个焦点为F(c,0)(c>0),且离心率等于,若该双曲线的一条渐近线被圆x2+y2﹣2cx=0截得的弦长为2,则该双曲线的标准方程为( ) A. B. C. D. 2.在中,,,,为的外心,若,,,则( ) A. B. C. D. 3.若不等式对于一切恒成立,则的最小值是 ( ) A.0 B. C. D. 4.设P={y |y=-x2+1,x∈R},Q={y |y=2x,x∈R},则 A.P Q B.Q P C.Q D.Q 5.已知,则的取值范围是(  ) A.[0,1] B. C.[1,2] D.[0,2] 6.已知函数,,若成立,则的最小值为( ) A.0 B.4 C. D. 7.在复平面内,复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.已知为实数集,,,则( ) A. B. C. D. 9.已知集合A={0,1},B={0,1,2},则满足A∪C=B的集合C的个数为(  ) A.4 B.3 C.2 D.1 10.如图,平面ABCD,ABCD为正方形,且,E,F分别是线段PA,CD的中点,则异面直线EF与BD所成角的余弦值为( ) A. B. C. D. 11.已知等差数列的公差为,前项和为,,,为某三角形的三边长,且该三角形有一个内角为,若对任意的恒成立,则实数( ). A.6 B.5 C.4 D.3 12.已知函数则函数的图象的对称轴方程为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.两光滑的曲线相切,那么它们在公共点处的切线方向相同.如图所示,一列圆 (an>0,rn>0,n=1,2…)逐个外切,且均与曲线y=x2相切,若r1=1,则a1=___,rn=______ 14.正方体的棱长为2, 是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦), 为正方体表面上的动点,当弦的长度最大时, 的取值范围是______. 15.已知抛物线的焦点为,过点且斜率为1的直线交抛物线于两点,,若线段的垂直平分线与轴交点的横坐标为,则的值为_________. 16.已知函数在上仅有2个零点,设,则在区间上的取值范围为_______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)在四棱锥中,底面是平行四边形,为其中心,为锐角三角形,且平面底面,为的中点,. (1)求证:平面; (2)求证:. 18.(12分)如图在直角中,为直角,,,分别为,的中点,将沿折起,使点到达点的位置,连接,,为的中点. (Ⅰ)证明:面; (Ⅱ)若,求二面角的余弦值. 19.(12分)已知函数,. (1)当时,判断是否是函数的极值点,并说明理由; (2)当时,不等式恒成立,求整数的最小值. 20.(12分)如图,在正四棱柱中,,,过顶点,的平面与棱,分别交于,两点(不在棱的端点处). (1)求证:四边形是平行四边形; (2)求证:与不垂直; (3)若平面与棱所在直线交于点,当四边形为菱形时,求长. 21.(12分)已知椭圆的左、右焦点分别为、,点在椭圆上,且. (Ⅰ)求椭圆的标准方程; (Ⅱ)设直线与椭圆相交于、两点,与圆相交于、两点,求的取值范围. 22.(10分)已知函数 (1)若对任意恒成立,求实数的取值范围; (2)求证: 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 由题得,,又,联立解方程组即可得,,进而得出双曲线方程. 【题目详解】 由题得 ① 又该双曲线的一条渐近线方程为,且被圆x2+y2﹣2cx=0截得的弦长为2, 所以 ② 又 ③ 由①②③可得:,, 所以双曲线的标准方程为. 故选:C 【答案点睛】 本题主要考查了双曲线的简单几何性质,圆的方程的有关计算,考查了学生的计算能力. 2、B 【答案解析】 首先根据题中条件和三角形中几何关系求出,,即可求出的值. 【题目详解】 如图所示过做三角形三边的垂线,垂足分别为,,, 过分别做,的平行线,, 由题知, 则外接圆半径, 因为,所以, 又因为,所以,, 由题可知, 所以,, 所以. 故选:D. 【答案点睛】 本题主要考查了三角形外心的性质,正弦定理,平面向量分解定理,属于一般题. 3、C 【答案解析】 试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论. 解:不等式x2+ax+1≥0对一切x∈(0,]成立,等价于a≥-x-对于一切成立, ∵y=-x-在区间上是增函数 ∴ ∴a≥- ∴a的最小值为-故答案为C. 考点:不等式的应用 点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题 4、C 【答案解析】 解:因为P ={y|y=-x2+1,x∈R}={y|y1},Q ={y| y=2x,x∈R }={y|y>0},因此选C 5、D 【答案解析】 设,可得,构造()22,结合,可得,根据向量减法的模长不等式可得解. 【题目详解】 设,则, , ∴()2•2 ||22=4,所以可得:, 配方可得, 所以, 又 则[0,2]. 故选:D. 【答案点睛】 本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 6、A 【答案解析】 令,进而求得,再转化为函数的最值问题即可求解. 【题目详解】 ∵∴(),∴, 令:,,在上增, 且,所以在上减,在上增, 所以,所以的最小值为0.故选:A 【答案点睛】 本题主要考查了导数在研究函数最值中的应用,考查了转化的数学思想,恰当的用一个未知数来表示和是本题的关键,属于中档题. 7、B 【答案解析】 化简复数为的形式,然后判断复数的对应点所在象限,即可求得答案. 【题目详解】 对应的点的坐标为在第二象限 故选:B. 【答案点睛】 本题主要考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题. 8、C 【答案解析】 求出集合,,,由此能求出. 【题目详解】 为实数集,,, 或, . 故选:. 【答案点睛】 本题考查交集、补集的求法,考查交集、补集的性质等基础知识,考查运算求解能力,是基础题. 9、A 【答案解析】 由可确定集合中元素一定有的元素,然后列出满足题意的情况,得到答案. 【题目详解】 由可知集合中一定有元素2,所以符合要求的集合有,共4种情况,所以选A项. 【答案点睛】 考查集合并集运算,属于简单题. 10、C 【答案解析】 分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系,再利用向量法求异面直线EF与BD所成角的余弦值. 【题目详解】 由题可知,分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系. 设.则. 故异面直线EF与BD所成角的余弦值为. 故选:C 【答案点睛】 本题主要考查空间向量和异面直线所成的角的向量求法,意在考查学生对这些知识的理解掌握水平. 11、C 【答案解析】 若对任意的恒成立,则为的最大值,所以由已知,只需求出取得最大值时的n即可. 【题目详解】 由已知,,又三角形有一个内角为,所以, ,解得或(舍), 故,当时,取得最大值,所以. 故选:C. 【答案点睛】 本题考查等差数列前n项和的最值问题,考查学生的计算能力,是一道基础题. 12、C 【答案解析】 ,将看成一个整体,结合的对称性即可得到答案. 【题目详解】 由已知,,令,得. 故选:C. 【答案点睛】 本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数的性质,是一道容易题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 第一空:将圆与联立,利用计算即可; 第二空:找到两外切的圆的圆心与半径的关系,再将与联立,得到,与结合可得为等差数列,进而可得. 【题目详解】 当r1=1时,圆, 与联立消去得, 则,解得; 由图可知当时,①, 将与联立消去得 , 则, 整理得,代入①得, 整理得, 则. 故答案为:;. 【答案点睛】 本题是抛物线与圆的关系背景下的数列题,关键是找到圆心和半径的关系,建立递推式,由递推式求通项公式,综合性较强,是一道难度较大的题目. 14、 【答案解析】 由弦的长度最大可知为球的直径.由向量的线性运用表示出,即可由范围求得的取值范围. 【题目详解】 连接,如下图所示: 设球心为,则当弦的长度最大时,为球的直径, 由向量线性运算可知 正方体的棱长为2,则球的半径为1,, 所以 , 而 所以, 即 故答案为:. 【答案点睛】 本题考查了空间向量线性运算与数量积的运算,正方体内切球性质应用,属于中档题. 15、1 【答案解析】 设,写出直线方程代入抛物线方程后应用韦达定理求得,由抛物线定义得焦点弦长,求得,再写出的垂直平分线方程,得,从而可得结论. 【题目详解】 抛物线的焦点坐标为,直线的方程为, 据得.设, 则. 线段垂直平分线方程为,令,则,所以, 所以. 故答案为:1. 【答案点睛】 本题考查抛物线的焦点弦问题,根据抛物线的定义表示出焦点弦长是解题关键. 16、 【答案解析】 先根据零点个数求解出的值,然后得到的解析式,采用换元法求解在上的值域即可. 【题目详解】 因为在上有两个零点, 所以,所以,所以且, 所以,所以, 所以, 令,所以,所以, 因为,所以,所以,所以, 所以 ,, 所以. 故答案为:. 【答案点睛】 本题考查三角函数图象与性质的综合,其中涉及到换元法求解三角函数值域的问题,难度较难. 对形如的函数的值域求解,关键是采用换元法令,然后根据,将问题转化为关于的函数的值域,同时要注意新元的范围. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)证明见解析(2)证明见解析 【答案解析】 (1)通过证明,即可证明线面平行; (2)通过证明平面,即可证明线线垂直. 【题目详解】 (1)连,因为为平行四边形,为其中心,所以,为中点, 又因为为中点,所以, 又平面,平面所以,平面; (2)作于因为平面平面, 平面平面,平面, 所以,平面又平面, 所以又,, 平面,平面所以,平面,又平面, 所以

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开