分享
北京市十二中2023学年高考全国统考预测密卷数学试卷(含解析).doc
下载文档

ID:20829

大小:2.50MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
北京市 十二 2023 学年 高考 全国 统考 预测 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是 A.y与x具有正的线性相关关系 B.回归直线过样本点的中心(,) C.若该大学某女生身高增加1cm,则其体重约增加0.85kg D.若该大学某女生身高为170cm,则可断定其体重比为58.79kg 2.近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法: ①可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数; ②可以估计不足的大学生使用主要玩游戏; ③可以估计使用主要找人聊天的大学生超过总数的. 其中正确的个数为( ) A. B. C. D. 3.在中,角,,的对边分别为,,,若,,,则( ) A. B.3 C. D.4 4.已知复数满足,则=( ) A. B. C. D. 5.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是() A. B. C. D. 6.执行如图所示的程序框图,若输出的,则①处应填写( ) A. B. C. D. 7.抛物线的焦点为,准线为,,是抛物线上的两个动点,且满足,设线段的中点在上的投影为,则的最大值是( ) A. B. C. D. 8.已知点,若点在曲线上运动,则面积的最小值为( ) A.6 B.3 C. D. 9.已知,则( ) A. B. C. D. 10.已知复数在复平面内对应的点的坐标为,则下列结论正确的是( ) A. B.复数的共轭复数是 C. D. 11.已知函数,,若对任意的总有恒成立,记的最小值为,则最大值为( ) A.1 B. C. D. 12.已知,是两条不重合的直线,,是两个不重合的平面,则下列命题中错误的是( ) A.若,,则或 B.若,,,则 C.若,,,则 D.若,,则 二、填空题:本题共4小题,每小题5分,共20分。 13.已知,则_____。 14.数学家狄里克雷对数论,数学分析和数学物理有突出贡献,是解析数论的创始人之一.函数,称为狄里克雷函数.则关于有以下结论: ①的值域为; ②; ③; ④ 其中正确的结论是_______(写出所有正确的结论的序号) 15.如图,在三棱锥中,平面,,已知,,则当最大时,三棱锥的体积为__________. 16.在平行四边形中,已知,,,若,,则____________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)在平面直角坐标系xOy中,曲线的参数方程为(为参数).以平面直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为. (1)求曲线的极坐标方程; (2)设和交点的交点为,求 的面积. 18.(12分)的内角的对边分别为,已知. (1)求的大小; (2)若,求面积的最大值. 19.(12分)某贫困地区几个丘陵的外围有两条相互垂直的直线型公路,以及铁路线上的一条应开凿的直线穿山隧道,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路, 以所在的直线分别为轴,轴, 建立平面直角坐标系, 如图所示, 山区边界曲线为,设公路与曲线相切于点,的横坐标为. (1)当为何值时,公路的长度最短?求出最短长度; (2)当公路的长度最短时,设公路交轴,轴分别为,两点,并测得四边形中,,,千米,千米,求应开凿的隧道的长度. 20.(12分)已知椭圆:的离心率为,直线:与以原点为圆心,以椭圆的短半轴长为半径的圆相切.为左顶点,过点的直线交椭圆于,两点,直线,分别交直线于,两点. (1)求椭圆的方程; (2)以线段为直径的圆是否过定点?若是,写出所有定点的坐标;若不是,请说明理由. 21.(12分)如图,在四棱锥中,底面是边长为2的菱形,,. (1)证明:平面平面ABCD; (2)设H在AC上,,若,求PH与平面PBC所成角的正弦值. 22.(10分)已知函数,其中. (1)函数在处的切线与直线垂直,求实数的值; (2)若函数在定义域上有两个极值点,且. ①求实数的取值范围; ②求证:. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 根据y与x的线性回归方程为 y=0.85x﹣85.71,则 =0.85>0,y 与 x 具有正的线性相关关系,A正确; 回归直线过样本点的中心(),B正确; 该大学某女生身高增加 1cm,预测其体重约增加 0.85kg,C正确; 该大学某女生身高为 170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误. 故选D. 2、C 【答案解析】 根据利用主要听音乐的人数和使用主要看社区、新闻、资讯的人数作大小比较,可判断①的正误;计算使用主要玩游戏的大学生所占的比例,可判断②的正误;计算使用主要找人聊天的大学生所占的比例,可判断③的正误.综合得出结论. 【题目详解】 使用主要听音乐的人数为,使用主要看社区、新闻、资讯的人数为,所以①正确; 使用主要玩游戏的人数为,而调查的总人数为,,故超过的大学生使用主要玩游戏,所以②错误; 使用主要找人聊天的大学生人数为,因为,所以③正确. 故选:C. 【答案点睛】 本题考查统计中相关命题真假的判断,计算出相应的频数与频率是关键,考查数据处理能力,属于基础题. 3、B 【答案解析】 由正弦定理及条件可得, 即. , ∴, 由余弦定理得。 ∴.选B。 4、B 【答案解析】 利用复数的代数运算法则化简即可得到结论. 【题目详解】 由,得, 所以,. 故选:B. 【答案点睛】 本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题. 5、A 【答案解析】 由直线过椭圆的左焦点,得到左焦点为,且, 再由,求得,代入椭圆的方程,求得,进而利用椭圆的离心率的计算公式,即可求解. 【题目详解】 由题意,直线经过椭圆的左焦点,令,解得, 所以,即椭圆的左焦点为,且 ① 直线交轴于,所以,, 因为,所以,所以, 又由点在椭圆上,得 ② 由,可得,解得, 所以, 所以椭圆的离心率为. 故选A. 【答案点睛】 本题考查了椭圆的几何性质——离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:①求出 ,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围). 6、B 【答案解析】 模拟程序框图运行分析即得解. 【题目详解】 ; ;. 所以①处应填写“” 故选:B 【答案点睛】 本题主要考查程序框图,意在考查学生对这些知识的理解掌握水平. 7、B 【答案解析】 试题分析:设在直线上的投影分别是,则,,又是中点,所以,则,在中,所以,即,所以,故选B. 考点:抛物线的性质. 【名师点晴】 在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦的中点到准线的距离首先等于两点到准线距离之和的一半,然后转化为两点到焦点的距离,从而与弦长之间可通过余弦定理建立关系. 8、B 【答案解析】 求得直线的方程,画出曲线表示的下半圆,结合图象可得位于,结合点到直线的距离公式和两点的距离公式,以及三角形的面积公式,可得所求最小值. 【题目详解】 解:曲线表示以原点为圆心,1为半径的下半圆(包括两个端点),如图, 直线的方程为, 可得,由圆与直线的位置关系知在时,到直线距离最短,即为, 则的面积的最小值为. 故选:B. 【答案点睛】 本题考查三角形面积最值,解题关键是掌握直线与圆的位置关系,确定半圆上的点到直线距离的最小值,这由数形结合思想易得. 9、D 【答案解析】 根据指数函数的单调性,即当底数大于1时单调递增,当底数大于零小于1时单调递减,对选项逐一验证即可得到正确答案. 【题目详解】 因为,所以,所以是减函数, 又因为,所以,, 所以,,所以A,B两项均错; 又,所以,所以C错; 对于D,,所以, 故选D. 【答案点睛】 这个题目考查的是应用不等式的性质和指对函数的单调性比较大小,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系. 10、D 【答案解析】 首先求得,然后根据复数乘法运算、共轭复数、复数的模、复数除法运算对选项逐一分析,由此确定正确选项. 【题目详解】 由题意知复数,则,所以A选项不正确;复数的共轭复数是,所以B选项不正确;,所以C选项不正确;,所以D选项正确. 故选:D 【答案点睛】 本小题考查复数的几何意义,共轭复数,复数的模,复数的乘法和除法运算等基础知识;考查运算求解能力,推理论证能力,数形结合思想. 11、C 【答案解析】 对任意的总有恒成立,因为,对恒成立,可得,令,可得,结合已知,即可求得答案. 【题目详解】 对任意的总有恒成立 ,对恒成立, 令, 可得 令,得 当, 当 ,, 故 令,得 当时, 当, 当时, 故选:C. 【答案点睛】 本题主要考查了根据不等式恒成立求最值问题,解题关键是掌握不等式恒成立的解法和导数求函数单调性的解法,考查了分析能力和计算能力,属于难题. 12、D 【答案解析】 根据线面平行和面面平行的性质,可判定A;由线面平行的判定定理,可判断B;C中可判断,所成的二面角为;D中有可能,即得解. 【题目详解】 选项A:若,,根据线面平行和面面平行的性质,有或,故A正确; 选项B:若,,,由线面平行的判定定理,有,故B正确; 选项C:若,,,故,所成的二面角为,则,故C正确; 选项D,若,,有可能,故D不正确. 故选:D 【答案点睛】 本题考查了空间中的平行垂直关系判断,考查了学生逻辑推理,空间想象能力,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 由已知求,再利用和角正切公式,求得, 【题目详解】 因为所以cos 因此. 【答案点睛】 本题考查了同角三角函数基本关系式与和角的正切公式。 14、② 【答案解析】 根据新定义,结合实数的性质即可判断①②③,由定义求得比小的有理数个数,即可确定④. 【题目详解】 对于①,由定义可知,当为有理数时;当为无理数时,则值域为,所以

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开