温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
河南省
地区
重点中学
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则( )
A.30° B.45° C.60° D.75°
2.设是虚数单位,,,则( )
A. B. C.1 D.2
3.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为( )
A. B. C. D.1
4.甲乙两人有三个不同的学习小组, , 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )
A. B. C. D.
5.设集合,,则集合
A. B. C. D.
6.要得到函数的图象,只需将函数的图象
A.向左平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向右平移个单位长度
7.已知是平面内互不相等的两个非零向量,且与的夹角为,则的取值范围是( )
A. B. C. D.
8.已知复数z满足i•z=2+i,则z的共轭复数是()
A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i
9.高三珠海一模中,经抽样分析,全市理科数学成绩X近似服从正态分布,且.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( )
A.40 B.60 C.80 D.100
10.已知双曲线的左右焦点分别为,,以线段为直径的圆与双曲线在第二象限的交点为,若直线与圆相切,则双曲线的渐近线方程是( )
A. B. C. D.
11.设函数是奇函数的导函数,当时,,则使得成立的的取值范围是( )
A. B.
C. D.
12.已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.设函数,若在上的最大值为,则________.
14.已知向量,,,若,则______.
15.(5分)国家禁毒办于2019年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是,则这五位同学答对题数的方差是____________.
16.一个长、宽、高分别为1、2、2的长方体可以在一个圆柱形容器内任意转动,则容器体积的最小值为_________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,已知直线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)设点的极坐标为,直线与曲线的交点为,求的值.
18.(12分)已知函数,不等式的解集为.
(1)求实数,的值;
(2)若,,,求证:.
19.(12分)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为.
(Ⅰ)求椭圆的离心率;
(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.
20.(12分)如图,在中,,的角平分线与交于点,.
(Ⅰ)求;
(Ⅱ)求的面积.
21.(12分)已知函数.
(1)若函数在上单调递增,求实数的值;
(2)定义:若直线与曲线都相切,我们称直线为曲线、的公切线,证明:曲线与总存在公切线.
22.(10分)在ABC中,角A,B,C的对边分别为a,b,c,已知,
(Ⅰ)求的大小;
(Ⅱ)若,求面积的最大值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
如图所示:作垂直于准线交准线于,则,故,得到答案.
【题目详解】
如图所示:作垂直于准线交准线于,则,
在中,,故,即.
故选:.
【答案点睛】
本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.
2、C
【答案解析】
由,可得,通过等号左右实部和虚部分别相等即可求出的值.
【题目详解】
解:,
,解得:.
故选:C.
【答案点睛】
本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把 当成进行运算.
3、C
【答案解析】
试题分析:设,由题意,显然时不符合题意,故,则
,可得:
,当且仅当时取等号,故选C.
考点:1.抛物线的简单几何性质;2.均值不等式.
【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题.解题时一定要注意分析条件,根据条件,利用向量的运算可知,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题.
4、A
【答案解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.
5、B
【答案解析】
先求出集合和它的补集,然后求得集合的解集,最后取它们的交集得出结果.
【题目详解】
对于集合A,,解得或,故.对于集合B,,解得.故.故选B.
【答案点睛】
本小题主要考查一元二次不等式的解法,考查对数不等式的解法,考查集合的补集和交集的运算.对于有两个根的一元二次不等式的解法是:先将二次项系数化为正数,且不等号的另一边化为,然后通过因式分解,求得对应的一元二次方程的两个根,再利用“大于在两边,小于在中间”来求得一元二次不等式的解集.
6、D
【答案解析】
先将化为,根据函数图像的平移原则,即可得出结果.
【题目详解】
因为,
所以只需将的图象向右平移个单位.
【答案点睛】
本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型.
7、C
【答案解析】
试题分析:如下图所示,则,因为与的夹角为,即,所以,设,则,在三角形中,由正弦定理得,所以,所以,故选C.
考点:1.向量加减法的几何意义;2.正弦定理;3.正弦函数性质.
8、D
【答案解析】
两边同乘-i,化简即可得出答案.
【题目详解】
i•z=2+i两边同乘-i得z=1-2i,共轭复数为1+2i,选D.
【答案点睛】
的共轭复数为
9、D
【答案解析】
由正态分布的性质,根据题意,得到,求出概率,再由题中数据,即可求出结果.
【题目详解】
由题意,成绩X近似服从正态分布,
则正态分布曲线的对称轴为,
根据正态分布曲线的对称性,求得,
所以该市某校有500人中,估计该校数学成绩不低于110分的人数为人,
故选:.
【答案点睛】
本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.
10、B
【答案解析】
先设直线与圆相切于点,根据题意,得到,再由,根据勾股定理求出,从而可得渐近线方程.
【题目详解】
设直线与圆相切于点,
因为是以圆的直径为斜边的圆内接三角形,所以,
又因为圆与直线的切点为,所以,
又,所以,
因此,
因此有,
所以,因此渐近线的方程为.
故选B
【答案点睛】
本题主要考查双曲线的渐近线方程,熟记双曲线的简单性质即可,属于常考题型.
11、D
【答案解析】
构造函数,令,则,
由可得,
则是区间上的单调递减函数,
且,
当x∈(0,1)时,g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;
当x∈(1,+∞)时,g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0
∵f(x)是奇函数,当x∈(-1,0)时,f(x)>0,(x2-1)f(x)<0
∴当x∈(-∞,-1)时,f(x)>0,(x2-1)f(x)>0.
综上所述,使得(x2-1)f(x)>0成立的x的取值范围是.
本题选择D选项.
点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.
12、C
【答案解析】
可设,根据在上为偶函数及便可得到:,可设,,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、、的大小关系,从而得到的大小关系.
【题目详解】
解:因为,即,又,
设,根据条件,,;
若,,且,则:;
在上是减函数;
;
;
在上是增函数;
所以,
故选:C
【答案点睛】
考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
求出函数的导数,由在上,可得在上单调递增,则函数最大值为,即可求出参数的值.
【题目详解】
解:定义域为
,
在上单调递增,
故在上的最大值为
故答案为:
【答案点睛】
本题考查利用导数研究函数的单调性与最值,属于基础题.
14、-1
【答案解析】
由向量垂直得向量的数量积为0,根据数量积的坐标运算可得结论.
【题目详解】
由已知,∵,∴,.
故答案为:-1.
【答案点睛】
本题考查向量垂直的坐标运算.掌握向量垂直与数量积的关系是解题关键.
15、2
【答案解析】
由这五位同学答对的题数分别是,得该组数据的平均数,则方差.
16、
【答案解析】
一个长、宽、高分别为1、2、2的长方体可以在一个圆柱形容器内任意转动,则圆柱形容器的底面直径及高的最小值均等于长方体的体对角线的长,长方体的体对角线的长为,所以容器体积的最小值为.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)(2)
【答案解析】
(1)由公式可化极坐标方程为直角坐标方程;
(2)把点极坐标化为直角坐标,直线的参数方程是过定点的标准形式,因此直接把参数方程代入曲线的方程,利用参数的几何意义求解.
【题目详解】
解:(1),则,∴,
所以曲线的直角坐标方程为,即
(2)点的直角坐标为,易知.设对应参数分别为
将与联立得
【答案点睛】
本题考查极坐标方程与直角坐标方程的互化,考查直线参数方程,解题时可利用利用参数方程的几何意义求直线上两点间距离问题.
18、(1),.(2)见解析
【答案解析】
(1)分三种情况讨论即可
(2)将,的值代入,然后利用均值定理即可.
【题目详解】
解:(1)不等式可化为.
即有或或.
解得,或或.
所以不等式的解集为,故,.
(2)由(1)知,,即,
由,得,,
当且仅当,即,时等号成立.故,即.
【答案点睛】
考查绝对值不等式的解法以及用均值定理证明不等式,中档题.
19、(Ⅰ);(Ⅱ).
【答案解析】
试题分析:(1)依题意,由点到直线的距离公式可得,又有,联立可求离心率;
(2)由(1)设椭圆方程,再设直线方程,与椭圆方程联立,求得,令,可得,即得椭圆方程.
试题