分享
2023年XX省农业面源污染现状及防控措施.docx
下载文档

ID:2080799

大小:21.75KB

页数:10页

格式:DOCX

时间:2023-04-24

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 XX 农业 污染 现状 措施
XX省农业面源污染现状及防控措施 农业面源污染的现状及处理方法 1农田尾水 1.1农田退水的现状 世界人口的快速增长,导致人们对粮食的刚性需求与日俱增。通过多施化肥来提高产量和收益已成为绝大多数农民的定式思维和习惯。为了提高粮食单产,化肥、农药施用量逐年增加,但利用率却较低,未被利用的化肥和农药随地表径流、农田排水等流入地表水环境引起面源污染问题。较之工业源污染实施清洁生产得到有效治理,过量施肥导致的农田面源污染已成为水体污染最大的污染源,农业面源污染不仅影响水体质量,而且也阻碍农业持续、健康地开展,成为社会经济开展需要解决的热点和难点问题。 面源污染与点源污染是相对的。农业面源污染是指在农业生产过程中所产生的溶解性或非溶解性的污染物,如泥沙、化肥、农药等,在降水或灌溉过程中,通过地表径流、农田排水等方式流入受纳水体而造成的面源污染。氮、磷是农业面源污染引起水体富营养化的主要限制性因子。据美国环保局调查,农业面源污染是导致美国40%的河流和湖泊水质不合格的主要污染源。在瑞典,农业源占流域中氮的来源的60%~87%。在荷兰,农业面源污染的总氮、总磷分别占流域污染总量的60%和40%~50%。相比之下,我国作为化肥的生产和应用大国,氮肥的使用居世界之首,农业面源污染问题亦不容乐观。据估计,在我国水体污染中,来自农业源的氮占到了水体污染的81%,磷占到93%。而农田生产中,又以水稻生产中不合理田间肥水管理方式导致的营养流失较大,其中氮肥的损失达30%~70%。我国水稻种植面积占总耕地面积的26.18%,种植区域广泛;而大面积的水稻种植区主要分布在秦岭黄河以南,占到70.19%。因此,由稻田直渗、侧渗、地表径流(含人工排水)等方式所带来的水体污染不可无视。有研究说明,南方太湖流域稻季氮素环境排放总量与施氮量之间呈显著正相关,约占总施氮量的30%,其中径流和渗漏分别占到排放总量的25%和18%。而宁夏引黄灌区作为我国西北内陆大型人工灌区,有大小排水沟200多条,水稻生产上的大水大肥方式导致氮肥随农田沟渠退水流失进入黄河到达20%~65%;灌溉期排水沟水 质总体为重度污染,劣吁类水质占70.0%。 1.2农田尾水的特点 农村面源污染具有排放年内变化量较大、路径随机、排放区域广泛等特征,同时,其产流、汇流具有较大的空间异质性,对区域内河道、水塘等水体的水环境质量影响较为严重,以太湖流域的直湖港为例,2023年全年水体中的总氮(tn)和总磷(tp)浓度分别平均高达8.98mg·l-1和0.35mg·l-1,其主要支流的龙延河近直湖港段,2023年下半年至2023年上半年分别平均达7.57mg·l-1和0.28mg·l-1。据统计,农村面源污染是造成直湖港流域水质恶化的主要因素,其中的总氮和总磷排放量分别占到总排放量的56.8%和65.6%。同时由于不合理的开发利用等原因,造成水系堵塞、淤积,更加剧了水体水质的恶化。 农田退水中氮和磷元素含量较高,是导致接受其水体富营养化的主要因素之一。农田退水的氮、磷污染特征主要表现在4个方面:一是农田沟渠退水氮、磷污染发生与水稻整个生长季同步,且与田间施肥和灌溉时间保持高度一致。二是农田退水中氮、磷浓度指标不同程度地超过了地表水环境质量标准,到达中度污染、甚至重度污染水质标准。三是农田沟渠退水中氮、磷输出主要形态是氨氮、硝氮和可溶性磷酸盐;灌溉和降雨时,农田沟渠退水中氮、磷迁移转化规律相似,氨氮、总氮、可溶性磷和总磷均沿程和随时间呈指数递减变化,硝态氮呈二次多项式曲线变化。四是绝大多数农田退水并没有因其富集氮、磷养分回灌农田,而是自由排放流入地势低洼或下游的池塘、湖泊或河流,成为下游水体的污染源。农田退水中的氮、磷是湖泊、河流水质退化的主要奉献者。 1.3农田尾水的处理状况 据调查,我国设市城市污水处理率已经从2023年的55.7%上升到2023年的99.1%,接近饱和;县城污水处理率从13.6%上升至82.6%,相比之下,长期以来对农村面源污染重视不够、投入很少,导致农田面源污染已成为水体污染最大的污染源。据全国环境统计公报(2023)显示,2023年农业源化学需氧量排放量高达1068.6万吨,占比全国废水中化学需氧量排放总量的48.06%;农业源氨氮排放量高达72.6万吨,占比全国废水中氨氮排放总量的31.6%。因此,农村农田退水的治理将是我国下阶段污水处理的“主战场〞。 导致我国农田退水处理困难的原因主要有。1)我国是农业大国,但是生产技术相对落后,粗狂型的生产模式浪费了大量的化肥农药;2)我国现行家庭联产承包责任制的土地政策,导致难以实现有效统一的管理;3)长期以来,我国把主要精力放在工业废水和城镇生活污水的治理上,对农田退水的危害意识缺乏,导致了农业面源污染问题日益严重,成为了湖泊、河流水质退化的主要污染源。 2农田退水处理技术 农田退水中所含氮、磷污染物将沿着沟渠流向区域低位的湖泊或河流,是小流域中湖泊或河流水体污染的源。因此,在农田退水进入湖泊或河流之前,高效去除农田退水中过量的氮、磷营养物质成为确保湖泊和河流良好水质的关键。国际上,受污染水体的修复方法通常有物理、化学和生物-生态法3种。从应用趋势和综合环境效益角度,生物-生态方法是水体环境修复中最应推崇的举措之一。近年来,应用于处理农田尾水的工程性措施主要有生态沟渠技术、生态浮床技术、稳定塘处理技术、生态滤池技术、水生植物塘与人工湿地技术等。 2.1生态沟渠技术 生态沟渠是在农田系统中构建成一定的沟渠,是农田非点源污染排放物和收纳水体之间的过渡带,在沟渠中配置多种植物,并在沟渠中设置辅助性工程设施,如透水坝、拦截坝等,对沟渠水体中氮、磷等污染物质进行拦截和吸附,其中包括沟渠基质吸附、植物吸收、底泥吸附,以及沟渠辅助物所产生的减缓流速和沉降泥沙等,从而到达净化水质的目的。植物是生态拦截沟渠塘的重要组成局部, 可通过人工种植和自然演替的方式形成。因此,植物的筛选成为生态沟渠构建中最重要的环节,应筛选根系兴旺、净化效果好、生长适应能力强、无休眠或短休眠期、经济价值与景观效果好的植物,其目的在于增加生物多样性,适应本地环境,延长使用寿命,提高脱氮除磷的效果。 生态沟渠的显著优点是农田退水在排水过程中得到一定程度的净化,为后续的人工湿地系统减轻了处理负荷,有效的提高了处理效果。在工程中还可以充分利用现有的局部农田土质排水沟渠,引入生态护坡和水生植物,实现改造,可以节省局部资金。其缺点是由于排水在其中的流速较缓,因此其占地面积较硬质排水沟渠大,受地区气候条件的限制,春夏时节需要种植植物,秋冬季节需要对植物进行收割处置。 2.2生态浮床技术 生态浮床技术是运用无土栽培的原理,采用现代农艺和生态工程措施,将陆生或水生植物移栽到水面的一种水体污染治理技术,其原理是通过植物吸收、吸附、微生物降解等作用,到达净化水质的目的。该技术具有投资少、见效快、管理方便等优点,是一种行之有效的水体原位生态修复技术,广泛应用于富营养化的河道、水塘、湖泊等水体。生态浮床技术不仅能降低污染物浓度,同时也对浮游植物群落产生积极影响,研究说明3种生态浮床覆盖率下水体中的浮游植物群落结构复杂性和生物多样性指数均显著高于空白对照组,其中,26%覆盖率比39%覆盖率水体中的浮游植物生物多样性指数要高,群落结构更复杂,随后是13%覆盖率处理。 传统的生态浮床技术除注重净化效率外,更多考虑景观需求,投入本钱无法得到补偿,因此,结合农业生产的实际需要,栽培适宜的经济作物,不仅可以实现对水质的改善,同时还可以通过收获水稻,产生一定的经济效益,补偿了一部 分污染治理的投资本钱。因此,在对农村面源污染及农业生产现状进行调查的根底上,采用当地能产生经济效益的植物构建生态浮床,改善水体水质、修复水体生态,到达因地制宜、节省投资的目的。 需要说明的是,生态浮床只能作为农村水环境生态修复中的一种“强化〞技术,可以在短期内实现改善水质的修复目的,但并不是永久性的技术手段,而要持续稳定水质、促进水生态系统的良性开展,那么需要利用构建长效的技术体系。 2.3生态滤池技术 生态滤池(meef)是利用水生微生物和人工填料上的生物膜形成的模仿自然生态系统来进行污水净化的一种水处理技术,污水中的颗粒物主要通过人工填料进行过滤,生物膜与微生物主要负责污水中的可溶性污染物。这种生态滤池污水处理技术实际上是模仿天然的生态系统,利用各种生态关系来进行水中污染物的处理和净化,是一个半自然生态系统。作为农田尾水处理终端,生态滤池的渗滤介质可以对尾水进流产生滞流作用,为随后的水分蒸腾提供时间,平均可减少33%的径流量,其截流作用对于水量控制的奉献最为突出。在生态滤池中,植被对于保持水流容量起到重要作用,因为作物根系的生长和衰老可用于对抗渗滤系统介质的压缩与堵塞,绝大局部悬浮固体和重金属污染物可以被有效去除。相对而言,n和p的去除随着生生态滤池设计结构的变化差异较大,现阶段研究也着重对有利于去除n、p污染的系统重构进行。在bratieres等人的研究中,上覆植被种类、渗透深度、渗透介质、渗透面积、进流污染浓度作为测试因素,被整合成125种测试组合分别接受最优化测试,结果说明植被选择对于n的去除至关重要,添加有机质对p的去除效率有很大提升。 2.4稳定塘处理技术 稳定塘是一种经过人工适当修整后设围堤和防渗层,主要通过微生物降解、沉降、转化、截滤等作用去除污染物。其有效水深在1-2m,由于藻类光合作用放氧和水外表的大气复氧而形成一个上部好氧区(距水面0.6m),而塘子底部较深形成了一个底部厌氧区,而在两者之间形成一个兼性区。这样就形成了一个厌氧-缺氧-好氧的一个体系,可以实现同步脱氮除磷。有机物的去除一般包括沉淀和絮凝、厌氧微生物的作用、好氧微生物的作用、浮游生物的作用和水生植物的作用,氮在稳定塘内的去除,主要是通过生物同化吸收转化为自身有机氮、氨氮的吹脱作用、形成生物沉淀以及硝化/反硝化等几种途径,磷元素去除涉及有机磷在微生物作用下分解氧化,菌藻及其他生物吸收无机磷合成新细胞,以及可溶性磷与不可溶性磷之间的转化等多种机制的共同作用。其对nh4+-n的去除易受环境温度、ph等因素影响,表现为温度和ph较高时,硝化/反硝化以及nh4+-n的挥发作用是tn的主要去除机制,假设在冬季低温时,nh4+-n挥发作用那么会受到抑制。稳定塘对p的去除主要是水生植物吸收和底泥对p的吸附/解吸等多种机制的共同作用。缺点是占地面积大、水力停留时间长、散发臭味、处理效果不稳定等。 稳定塘同时具有调蓄作用,因排水干渠来水包含了降雨形成的流量变化很大的地表径流,假设不进行有效调节,将影响水质净化效果,甚至会对处理设施安全造成危害。因此,建设稳定塘净化调蓄系统,可以起到水量调蓄和水质净化的双重作用。 2.5人工湿地处理技术 人工湿地处理系统是利用人工介质、植物、微生物的物理、化学、生物三重协同作用对污水进行处理的一种技术。绝大多数人工湿地由四局部组成:(1)土壤、砂、砾石等透水性基质;(2)芦苇、香蒲等适于在饱和水和厌氧基质中生长的植物;(3)微生物种群;(4)在基质外表流动的水体。人工湿地利用基质的土壤吸附作用、微生物的生物降解作用以及植物的吸收作用,来实现污水的高效净化、无害化与资源化。 湿地净化污染物的机理比拟复杂,其主要净化机理除植物对悬浮性污染物的过滤吸附及吸收作用外,植物根系附近的微生物对有机物及氮磷营养物的去除起到了关键作用。特别在脱氮上,芦苇具有通过茎秆向根系供氧的能力,可在根系附近形成脱氮所必备的好氧和缺氧区域,促进湿地生态系统的硝化和反硝化作用进行,强化其净化能力。

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开