温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
湖南省
张家界市
高考
数学
考前
最后
一卷
预测
解析
2023学年高考数学模拟测试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为
A.72 B.64 C.48 D.32
2.函数的图象大致为
A. B. C. D.
3.已知直线与直线则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
4.在正方体中,点,,分别为棱,,的中点,给出下列命题:①;②;③平面;④和成角为.正确命题的个数是( )
A.0 B.1 C.2 D.3
5.不等式组表示的平面区域为,则( )
A., B.,
C., D.,
6.已知双曲线的一个焦点为,点是的一条渐近线上关于原点对称的两点,以为直径的圆过且交的左支于两点,若,的面积为8,则的渐近线方程为( )
A. B.
C. D.
7.的展开式中的项的系数为( )
A.120 B.80 C.60 D.40
8.要得到函数的导函数的图像,只需将的图像( )
A.向右平移个单位长度,再把各点的纵坐标伸长到原来的3倍
B.向右平移个单位长度,再把各点的纵坐标缩短到原来的倍
C.向左平移个单位长度,再把各点的纵坐标缩短到原来的倍
D.向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍
9.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;其中真命题的个数为( )
A.3 B.2 C.1 D.0
10.设等差数列的前项和为,若,则( )
A.23 B.25 C.28 D.29
11.已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为( )
A. B. C. D.
12.已知复数z满足,则在复平面上对应的点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题:本题共4小题,每小题5分,共20分。
13.如图,己知半圆的直径,点是弦(包含端点,)上的动点,点在弧上.若是等边三角形,且满足,则的最小值为___________.
14.某中学举行了一次消防知识竞赛,将参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图,记图中从左到右依次为第一、第二、第三、第四、第五组,已知第二组的频数是80,则成绩在区间的学生人数是__________.
15.在各项均为正数的等比数列中,,且,成等差数列,则___________.
16.设函数,若存在实数m,使得关于x的方程有4个不相等的实根,且这4个根的平方和存在最小值,则实数a的取值范围是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)己知,,.
(1)求证:;
(2)若,求证:.
18.(12分)某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如下表所示. 据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元.
年龄
(单位:岁)
保费
(单位:元)
(1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值;
(2)经调查,年龄在之间的老人每人中有人患该项疾病(以此频率作为概率).该病的治疗费为元,如果参保,保险公司补贴治疗费元.某老人年龄岁,若购买该项保险(取中的).针对此疾病所支付的费用为元;若没有购买该项保险,针对此疾病所支付的费用为元.试比较和的期望值大小,并判断该老人购买此项保险是否划算?
19.(12分)已知函数.
(1)若,求函数的单调区间;
(2)若恒成立,求实数的取值范围.
20.(12分)已知为椭圆的左、右焦点,离心率为,点在椭圆上.
(1)求椭圆的方程;
(2)过的直线分别交椭圆于和,且,问是否存在常数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.
21.(12分)已知椭圆:()的左、右顶点分别为、,焦距为2,点为椭圆上异于、的点,且直线和的斜率之积为.
(1)求的方程;
(2)设直线与轴的交点为,过坐标原点作交椭圆于点,试探究是否为定值,若是,求出该定值;若不是,请说明理由.
22.(10分)过点作倾斜角为的直线与曲线(为参数)相交于M、N两点.
(1)写出曲线C的一般方程;
(2)求的最小值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。
【题目详解】
由题意,几何体的三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,
所以几何体的体积为,故选B。
【答案点睛】
本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线。求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解。
2、D
【答案解析】
由题可得函数的定义域为,
因为,所以函数为奇函数,排除选项B;
又,,所以排除选项A、C,故选D.
3、B
【答案解析】
利用充分必要条件的定义可判断两个条件之间的关系.
【题目详解】
若,则,故或,
当时,直线,直线 ,此时两条直线平行;
当时,直线,直线 ,此时两条直线平行.
所以当时,推不出,故“”是“”的不充分条件,
当时,可以推出,故“”是“”的必要条件,
故选:B.
【答案点睛】
本题考查两条直线的位置关系以及必要不充分条件的判断,前者应根据系数关系来考虑,后者依据两个条件之间的推出关系,本题属于中档题.
4、C
【答案解析】
建立空间直角坐标系,利用向量的方法对四个命题逐一分析,由此得出正确命题的个数.
【题目详解】
设正方体边长为,建立空间直角坐标系如下图所示,,.
①,,所以,故①正确.
②,,不存在实数使,故不成立,故②错误.
③,,,故平面不成立,故③错误.
④,,设和成角为,则,由于,所以,故④正确.
综上所述,正确的命题有个.
故选:C
【答案点睛】
本小题主要考查空间线线、线面位置关系的向量判断方法,考查运算求解能力,属于中档题.
5、D
【答案解析】
根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.
【题目详解】
解:根据题意,不等式组其表示的平面区域如图所示,
其中 ,,
设,则,的几何意义为直线在轴上的截距的2倍,
由图可得:当过点时,直线在轴上的截距最大,即,
当过点原点时,直线在轴上的截距最小,即,
故AB错误;
设,则的几何意义为点与点连线的斜率,
由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确;
故选:D.
【答案点睛】
本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.
6、B
【答案解析】
由双曲线的对称性可得即,又,从而可得的渐近线方程.
【题目详解】
设双曲线的另一个焦点为,由双曲线的对称性,四边形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的渐近线方程为.
故选B
【答案点睛】
本题考查双曲线的简单几何性质,考查直线与圆的位置关系,考查数形结合思想与计算能力,属于中档题.
7、A
【答案解析】
化简得到,再利用二项式定理展开得到答案.
【题目详解】
展开式中的项为.
故选:
【答案点睛】
本题考查了二项式定理,意在考查学生的计算能力.
8、D
【答案解析】
先求得,再根据三角函数图像变换的知识,选出正确选项.
【题目详解】
依题意,所以由向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍得到的图像.
故选:D
【答案点睛】
本小题主要考查复合函数导数的计算,考查诱导公式,考查三角函数图像变换,属于基础题.
9、C
【答案解析】
根据抽样方式的特征,可判断①;根据相关系数的性质,可判断②;根据独立性检验的方法和步骤,可判断③.
【题目详解】
①根据抽样是间隔相同,且样本间无明显差异,故①应是系统抽样,即①为假命题;
②两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故②为真命题;
③对分类变量与的随机变量的观测值来说,越小,“与有关系”的把握程度越小,故③为假命题.
故选:.
【答案点睛】
本题以命题的真假判断为载体考查了抽样方法、相关系数、独立性检验等知识点,属于基础题.
10、D
【答案解析】
由可求,再求公差,再求解即可.
【题目详解】
解:是等差数列
,又,
公差为,
,
故选:D
【答案点睛】
考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.
11、C
【答案解析】
设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论.
【题目详解】
设分别是的中点
平面
是等边三角形
又
平面 为与平面所成的角
是边长为的等边三角形
,且为所在截面圆的圆心
球的表面积为 球的半径
平面
本题正确选项:
【答案点睛】
本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题.
12、A
【答案解析】
设,由得:,由复数相等可得的值,进而求出,即可得解.
【题目详解】
设,由得:,即,
由复数相等可得:,解之得:,则,所以,在复平面对应的点的坐标为,在第一象限.
故选:A.
【答案点睛】
本题考查共轭复数的求法,考查对复数相等的理解,考查复数在复平面对应的点,考查运算能力,属于常考题.
二、填空题:本题共4小题,每小题5分,共20分。
13、1
【答案解析】
建系,设,表示出点坐标,则,根据的范围得出答案.
【题目详解】
解:以为原点建立平面坐标系如图所示:则,,,,
设,则,,
,,,
,
,
显然当取得最大值4时,取得最小值1.
故答案为:1.
【答案点睛】
本题考查了平面向量的数量积运算,坐标运算,属于中档题.
14、30
【答案解析】
根据频率直方图中数据先计算样本容量,再计算成绩在80~100分的频率,继而得解.
【题目详解】
根据直方图知第二组的频率是,则样本容量是,
又成绩在80~100分的频率是,
则成绩在区间的学生人数是.
故答案为:30
【答案点睛】
本题考查了频率分布直方图的应用,考查了学生综合分析,数据处理,数形运算的能力,属于基