温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
江苏省
南京
高级中学
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,是函数图像上不同的两点,若曲线在点,处的切线重合,则实数的最小值是( )
A. B. C. D.1
2.已知,满足约束条件,则的最大值为
A. B. C. D.
3.已知双曲线),其右焦点F的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )
A. B.2 C. D.
4.如图,在圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,异面直线SC与OE所成角的正切值为( )
A. B. C. D.
5.已知F为抛物线y2=4x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则||FA|﹣|FB||的值等于( )
A. B.8 C. D.4
6.已知是椭圆和双曲线的公共焦点,是它们的-一个公共点,且,设椭圆和双曲线的离心率分别为,则的关系为( )
A. B.
C. D.
7.如图,正方体中,,,,分别为棱、、、的中点,则下列各直线中,不与平面平行的是( )
A.直线 B.直线 C.直线 D.直线
8.已知向量,,=(1,),且在方向上的投影为,则等于( )
A.2 B.1 C. D.0
9.已知双曲线的右焦点为,若双曲线的一条渐近线的倾斜角为,且点到该渐近线的距离为,则双曲线的实轴的长为
A. B.
C. D.
10.函数的图象在点处的切线为,则在轴上的截距为( )
A. B. C. D.
11.已知为定义在上的偶函数,当时,,则( )
A. B. C. D.
12.如图,在正方体中,已知、、分别是线段上的点,且.则下列直线与平面平行的是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.满足约束条件的目标函数的最小值是 .
14.已知,满足约束条件则的最小值为__________.
15.已知复数满足(为虚数单位),则复数的实部为____________.
16.已知是函数的极大值点,则的取值范围是____________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.
(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程;
(2)若点,为曲线上两动点,且满足,求面积的最大值.
18.(12分)如图,在四棱锥中,底面为等腰梯形,,为等腰直角三角形,,平面底面,为的中点.
(1)求证:平面;
(2)若平面与平面的交线为,求二面角的正弦值.
19.(12分)已知函数与的图象关于直线对称. (为自然对数的底数)
(1)若的图象在点处的切线经过点,求的值;
(2)若不等式恒成立,求正整数的最小值.
20.(12分)设函数.
(1)当时,求不等式的解集;
(2)若不等式恒成立,求实数a的取值范围.
21.(12分)求函数的最大值.
22.(10分)已知椭圆:过点,过坐标原点作两条互相垂直的射线与椭圆分别交于,两点.
(1)证明:当取得最小值时,椭圆的离心率为.
(2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
先根据导数的几何意义写出 在 两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出,令函数 ,结合导数求出最小值,即可选出正确答案.
【题目详解】
解:当 时,,则;当时,
则.设 为函数图像上的两点,
当 或时,,不符合题意,故.
则在 处的切线方程为;
在 处的切线方程为.由两切线重合可知
,整理得.不妨设
则 ,由 可得
则当时, 的最大值为.
则在 上单调递减,则.
故选:B.
【答案点睛】
本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出 和 的函数关系式.本题的易错点是计算.
2、D
【答案解析】
作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论.
【题目详解】
作出不等式组表示的平面区域如下图中阴影部分所示,
等价于,作直线,向上平移,
易知当直线经过点时最大,所以,故选D.
【答案点睛】
本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
3、C
【答案解析】
计算得到,,代入双曲线化简得到答案.
【题目详解】
双曲线的一条渐近线方程为,是第一象限内双曲线渐近线上的一点,,
故,,故,代入双曲线化简得到:,故.
故选:.
【答案点睛】
本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.
4、D
【答案解析】
可过点S作SF∥OE,交AB于点F,并连接CF,从而可得出∠CSF(或补角)为异面直线SC与OE所成的角,根据条件即可求出,这样即可得出tan∠CSF的值.
【题目详解】
如图,过点S作SF∥OE,交AB于点F,连接CF,
则∠CSF(或补角)即为异面直线SC与OE所成的角,
∵,∴,
又OB=3,∴,
SO⊥OC,SO=OC=3,∴;
SO⊥OF,SO=3,OF=1,∴;
OC⊥OF,OC=3,OF=1,∴,
∴等腰△SCF中,.
故选:D.
【答案点睛】
本题考查了异面直线所成角的定义及求法,直角三角形的边角的关系,平行线分线段成比例的定理,考查了计算能力,属于基础题.
5、C
【答案解析】
将直线方程代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出的值.
【题目详解】
F(1,0),故直线AB的方程为y=x﹣1,联立方程组,可得x2﹣6x+1=0,
设A(x1,y1),B(x2,y2),由根与系数的关系可知x1+x2=6,x1x2=1.
由抛物线的定义可知:|FA|=x1+1,|FB|=x2+1,
∴||FA|﹣|FB||=|x1﹣x2|=.
故选C.
【答案点睛】
本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题.
6、A
【答案解析】
设椭圆的半长轴长为,双曲线的半长轴长为,根据椭圆和双曲线的定义得: ,解得,然后在中,由余弦定理得:,化简求解.
【题目详解】
设椭圆的长半轴长为,双曲线的长半轴长为 ,
由椭圆和双曲线的定义得: ,
解得,设,
在中,由余弦定理得: ,
化简得,
即.
故选:A
【答案点睛】
本题主要考查椭圆,双曲线的定义和性质以及余弦定理的应用,还考查了运算求解的能力,属于中档题.
7、C
【答案解析】
充分利用正方体的几何特征,利用线面平行的判定定理,根据判断A的正误.根据,判断B的正误.根据与 相交,判断C的正误.根据,判断D的正误.
【题目详解】
在正方体中,因为 ,所以 平面,故A正确.
因为,所以,所以平面 故B正确.
因为,所以平面,故D正确.
因为与 相交,所以 与平面 相交,故C错误.
故选:C
【答案点睛】
本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.
8、B
【答案解析】
先求出,再利用投影公式求解即可.
【题目详解】
解:由已知得,
由在方向上的投影为,得,
则.
故答案为:B.
【答案点睛】
本题考查向量的几何意义,考查投影公式的应用,是基础题.
9、B
【答案解析】
双曲线的渐近线方程为,由题可知.
设点,则点到直线的距离为,解得,
所以,解得,所以双曲线的实轴的长为,故选B.
10、A
【答案解析】
求出函数在处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.
【题目详解】
,故,
所以曲线在处的切线方程为:.
令,则,故切线的纵截距为.
故选:A.
【答案点睛】
本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.
11、D
【答案解析】
判断,利用函数的奇偶性代入计算得到答案.
【题目详解】
∵,∴.
故选:
【答案点睛】
本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.
12、B
【答案解析】
连接,使交于点,连接、,可证四边形为平行四边形,可得,利用线面平行的判定定理即可得解.
【题目详解】
如图,连接,使交于点,连接、,则为的中点,
在正方体中,且,则四边形为平行四边形,
且,
、分别为、的中点,且,
所以,四边形为平行四边形,则,
平面,平面,因此,平面.
故选:B.
【答案点睛】
本题主要考查了线面平行的判定,考查了推理论证能力和空间想象能力,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、-2
【答案解析】
可行域是如图的菱形ABCD,
代入计算,
知为最小.
14、
【答案解析】
画出可行域,通过平移基准直线到可行域边界位置,由此求得目标函数的最小值.
【题目详解】
画出可行域如下图所示,由图可知:
可行域是由三点,,构成的三角形及其内部,当直线过点时,取得最小值.
故答案为:
【答案点睛】
本小题主要考查利用线性规划求目标函数的最值,考查数形结合的数学思想方法,属于基础题.
15、
【答案解析】
利用复数的概念与复数的除法运算计算即可得到答案.
【题目详解】
,所以复数的实部为2.
故答案为:2
【答案点睛】
本题考查复数的除法运算,考查学生的基本计算能力,是一道基础题.
16、
【答案解析】
方法一:令,则,,当,时,,单调递减,∴时,,,且,∴在上单调递增,时,,,且,∴在上单调递减,∴是函数的极大值点,∴满足题意;当时,存在使得,即,又在上单调递减,∴时,,,所以,这与是函数的极大值点矛盾.综上,.
方法二:依据极值的定义,要使是函数的极大值点,由知须在的左侧附近,,即;在的右侧附近,,即.易知,时,与相切于原点,所以根据与的图象关系,可得.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2)
【答案解析】
(1)消去参数,将圆的参数方程,转化为普通方程,再由圆心到直线的距离等于半径,可求得圆的普通方程,最后利用求得圆的极坐标方程.
(2)利用圆的参数方程以及辅助角公式,由此求得的面积的表达式,再由三角函数最值的求法,求得三角形面积的最大值.
【题目详解】
(1)由题意得:,:
因为曲线和相切,所以,即:;
(2)设,
所以
所以当时,面积最大值为
【答案点睛】
本小题主要考查参数方程转化为普通方程,考查直角坐标方程转化为极坐标方程,考查利用参数的方法求三角形面积的最值,属于中档题.
18、(1)证明见解析;(2)
【答案解析】
(1)取的中点,连接,易得,进而可证明四边形为平行四边形,即,从而可证明平面;
(2)取中点,中点,连接,易证平面,平面,从而可知两两垂直,以点为坐标原点,向量的