温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
北京市
第五
十六
中学
2023
学年
高考
冲刺
模拟
数学试题
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数,若,使得,则实数的取值范围是( )
A. B.
C. D.
2.函数的图象与轴交点的横坐标构成一个公差为的等差数列,要得到函数的图象,只需将的图象( )
A.向左平移个单位 B.向右平移个单位
C.向左平移个单位 D.向右平移个单位
3.设为非零实数,且,则( )
A. B. C. D.
4.已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为( )
A. B. C. D.
5.已知定义在上的函数,,,,则,,的大小关系为( )
A. B. C. D.
6.若为虚数单位,则复数在复平面上对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.的展开式中,满足的的系数之和为( )
A. B. C. D.
8.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是
A. B. C. D.
9.展开式中x2的系数为( )
A.-1280 B.4864 C.-4864 D.1280
10.如图1,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺.
A. B. C. D.
11.已知集合(),若集合,且对任意的,存在使得,其中,,则称集合A为集合M的基底.下列集合中能作为集合的基底的是( )
A. B. C. D.
12.设集合,则 ( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.在一次医疗救助活动中,需要从A医院某科室的6名男医生、4名女医生中分别抽调3名男医生、2名女医生,且男医生中唯一的主任医师必须参加,则不同的选派案共有________种.(用数字作答)
14.三个小朋友之间送礼物,约定每人送出一份礼物给另外两人中的一人(送给两个人的可能性相同),则三人都收到礼物的概率为______.
15.在区间内任意取一个数,则恰好为非负数的概率是________.
16.在某批次的某种灯泡中,随机抽取200个样品.并对其寿命进行追踪调查,将结果列成频率分布表如下:
寿命(天)
频数
频率
40
60
0.3
0.4
20
0.1
合计
200
1
某人从灯泡样品中随机地购买了个,如果这个灯泡的寿命情况恰好与按四个组分层抽样所得的结果相同,则的最小值为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆:(),四点,,,中恰有三点在椭圆上.
(1)求椭圆的方程;
(2)设椭圆的左右顶点分别为.是椭圆上异于的动点,求的正切的最大值.
18.(12分)已知
(1)若 ,且函数 在区间 上单调递增,求实数a的范围;
(2)若函数有两个极值点 ,且存在 满足 ,令函数 ,试判断 零点的个数并证明.
19.(12分)为增强学生的法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50名学生,统计他们的竞赛成绩,已知这50名学生的竞赛成绩均在[50,100]内,并得到如下的频数分布表:
分数段
[50,60)
[60,70)
[70,80)
[80,90)
[90,100]
人数
5
15
15
12
3
(1)将竞赛成绩在内定义为“合格”,竞赛成绩在内定义为“不合格”.请将下面的列联表补充完整,并判断是否有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关?
合格
不合格
合计
高一新生
12
非高一新生
6
合计
(2)在(1)的前提下,按“竞赛成绩合格与否”进行分层抽样,从这50名学生中抽取5名学生,再从这5名学生中随机抽取2名学生,求这2名学生竞赛成绩都合格的概率.
参考公式及数据:,其中.
20.(12分)已知函数.
(1)当时,判断在上的单调性并加以证明;
(2)若,,求的取值范围.
21.(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.
(1)求的直角坐标方程和的直角坐标;
(2)设与交于,两点,线段的中点为,求.
22.(10分)已知都是各项不为零的数列,且满足其中是数列的前项和,是公差为的等差数列.
(1)若数列是常数列,,,求数列的通项公式;
(2)若是不为零的常数),求证:数列是等差数列;
(3)若(为常数,),.求证:对任意的恒成立.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
试题分析:由题意知,当时,由,当且仅当时,即等号是成立,所以函数的最小值为,当时,为单调递增函数,所以,又因为,使得,即在的最小值不小于在上的最小值,即,解得,故选C.
考点:函数的综合问题.
【方法点晴】本题主要考查了函数的综合问题,其中解答中涉及到基本不等式求最值、函数的单调性及其应用、全称命题与存在命题的应用等知识点的综合考查,试题思维量大,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,其中解答中转化为在的最小值不小于在上的最小值是解答的关键.
2、A
【答案解析】
依题意有的周期为.而,故应左移.
3、C
【答案解析】
取,计算知错误,根据不等式性质知正确,得到答案.
【题目详解】
,故,,故正确;
取,计算知错误;
故选:.
【答案点睛】
本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.
4、B
【答案解析】
由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.
【题目详解】
抛物线的焦点为,
则,即,
设点的坐标为,点的坐标为,
如图:
∴,
解得,或(舍去),
∴
∴直线的方程为,
设直线与抛物线的另一个交点为,
由,解得或,
∴,
∴,
故直线被截得的弦长为.
故选:B.
【答案点睛】
本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题.
5、D
【答案解析】
先判断函数在时的单调性,可以判断出函数是奇函数,利用奇函数的性质可以得到,比较三个数的大小,然后根据函数在时的单调性,比较出三个数的大小.
【题目详解】
当时,,函数在时,是增函数.因为,所以函数是奇函数,所以有,因为,函数在时,是增函数,所以,故本题选D.
【答案点睛】
本题考查了利用函数的单调性判断函数值大小问题,判断出函数的奇偶性、单调性是解题的关键.
6、D
【答案解析】
根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案.
【题目详解】
由题意,根据复数的运算,可得,
所对应的点为位于第四象限.
故选D.
【答案点睛】
本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题.
7、B
【答案解析】
,有,,三种情形,用中的系数乘以中的系数,然后相加可得.
【题目详解】
当时,的展开式中的系数为
.当,时,系数为;当,时,系数为;当,时,系数为;故满足的的系数之和为.
故选:B.
【答案点睛】
本题考查二项式定理,掌握二项式定理和多项式乘法是解题关键.
8、A
【答案解析】
详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,
且俯视图应为对称图形
故俯视图为
故选A.
点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。
9、A
【答案解析】
根据二项式展开式的公式得到具体为:化简求值即可.
【题目详解】
根据二项式的展开式得到可以第一个括号里出项,第二个括号里出项,或者第一个括号里出,第二个括号里出,具体为:
化简得到-1280 x2
故得到答案为:A.
【答案点睛】
求二项展开式有关问题的常见类型及解题策略:
(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.
(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.
10、B
【答案解析】
如图,已知,,
∴,解得 ,
∴,解得 .
∴折断后的竹干高为4.55尺
故选B.
11、C
【答案解析】
根据题目中的基底定义求解.
【题目详解】
因为,
,
,
,
,
,
所以能作为集合的基底,
故选:C
【答案点睛】
本题主要考查集合的新定义,还考查了理解辨析的能力,属于基础题.
12、B
【答案解析】
直接进行集合的并集、交集的运算即可.
【题目详解】
解:;
∴.
故选:B.
【答案点睛】
本题主要考查集合描述法、列举法的定义,以及交集、并集的运算,是基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
首先选派男医生中唯一的主任医师,由题意利用排列组合公式即可确定不同的选派案方法种数.
【题目详解】
首先选派男医生中唯一的主任医师,
然后从名男医生、名女医生中分别抽调2名男医生、名女医生,
故选派的方法为:.
故答案为.
【答案点睛】
解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).
14、
【答案解析】
基本事件总数,三人都收到礼物包含的基本事件个数.由此能求出三人都收到礼物的概率.
【题目详解】
三个小朋友之间准备送礼物,
约定每人只能送出一份礼物给另外两人中的一人(送给两个人的可能性相同),
基本事件总数,
三人都收到礼物包含的基本事件个数.
则三人都收到礼物的概率.
故答案为:.
【答案点睛】
本题考查古典概型概率的求法,考查运算求解能力,属于基础题.
15、
【答案解析】
先分析非负数对应的区间长度,然后根据几何概型中的长度模型,即可求解出“恰好为非负数”的概率.
【题目详解】
当是非负数时,,区间长度是,
又因为对应的区间长度是,
所以“恰好为非负数”的概率是.
故答案为:.
【答案点睛】
本题考查几何概型中的长度模型,难度较易.解答问题的关键是能判断出目标事件对应的区间长度.
16、10
【答案解析】
先求出a,b,根据分层抽样的比例引入正整数k表示n,从而得出的最小值.
【题