温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
山东省
临沂市
罗庄区七校
联考
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知是第二象限的角,,则( )
A. B. C. D.
2.双曲线的渐近线与圆(x-3)2+y2=r2(r>0)相切,则r等于( )
A. B.2
C.3 D.6
3.已知,,,,则( )
A. B. C. D.
4.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为( )
A. B. C. D.
5.已知命题,,则是( )
A., B.,.
C., D.,.
6.设、,数列满足,,,则( )
A.对于任意,都存在实数,使得恒成立
B.对于任意,都存在实数,使得恒成立
C.对于任意,都存在实数,使得恒成立
D.对于任意,都存在实数,使得恒成立
7.某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有( )种.
A.360 B.240 C.150 D.120
8.根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是( )
A.至少有一个样本点落在回归直线上
B.若所有样本点都在回归直线上,则变量同的相关系数为1
C.对所有的解释变量(),的值一定与有误差
D.若回归直线的斜率,则变量x与y正相关
9.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )
A. B. C. D.
10.已知函数,若方程恰有两个不同实根,则正数m的取值范围为( )
A. B.
C. D.
11.为得到函数的图像,只需将函数的图像( )
A.向右平移个长度单位 B.向右平移个长度单位
C.向左平移个长度单位 D.向左平移个长度单位
12.设集合,,则( ).
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.在平面直角坐标系中,若函数在处的切线与圆存在公共点,则实数的取值范围为_____.
14.在平面直角坐标系xOy中,若圆C1:x2+(y-1)2=r2(r>0)上存在点P,且点P关于直线x-y=0的对称点Q在圆C2:(x-2)2+(y-1)2=1上,则r的取值范围是________.
15.已知若存在,使得成立的最大正整数为6,则的取值范围为________.
16.已知向量,,若向量与向量平行,则实数___________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(1)当时,求函数的图象在处的切线方程;
(2)讨论函数的单调性;
(3)当时,若方程有两个不相等的实数根,求证:.
18.(12分)如图,在平行四边形中,,,现沿对角线将折起,使点A到达点P,点M,N分别在直线,上,且A,B,M,N四点共面.
(1)求证:;
(2)若平面平面,二面角平面角大小为,求直线与平面所成角的正弦值.
19.(12分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.
求证:(1)AM∥平面BDE;
(2)AM⊥平面BDF.
20.(12分)如图,平面四边形为直角梯形,,,,将绕着翻折到.
(1)为上一点,且,当平面时,求实数的值;
(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.
21.(12分)已知函数为实数)的图像在点处的切线方程为.
(1)求实数的值及函数的单调区间;
(2)设函数,证明时, .
22.(10分)如图,四棱锥中,底面是菱形,对角线交于点为棱的中点,.求证:
(1)平面;
(2)平面平面.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
利用诱导公式和同角三角函数的基本关系求出,再利用二倍角的正弦公式代入求解即可.
【题目详解】
因为,
由诱导公式可得,,
即,
因为,
所以,
由二倍角的正弦公式可得,
,
所以.
故选:D
【答案点睛】
本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.
2、A
【答案解析】
由圆心到渐近线的距离等于半径列方程求解即可.
【题目详解】
双曲线的渐近线方程为y=±x,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r,即r=.
答案:A
【答案点睛】
本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.
3、D
【答案解析】
令,求,利用导数判断函数为单调递增,从而可得,设,利用导数证出为单调递减函数,从而证出,即可得到答案.
【题目详解】
时,
令,求导
,,故单调递增:
∴,
当,设,
,
又,
,即,
故.
故选:D
【答案点睛】
本题考查了作差法比较大小,考查了构造函数法,利用导数判断式子的大小,属于中档题.
4、B
【答案解析】
根据题意表示出各位上的数字所对应的算筹即可得答案.
【题目详解】
解:根据题意可得,各个数码的筹式需要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表示,
用算筹表示应为:纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为中的.
故选:.
【答案点睛】
本题主要考查学生的合情推理与演绎推理,属于基础题.
5、B
【答案解析】
根据全称命题的否定为特称命题,得到结果.
【题目详解】
根据全称命题的否定为特称命题,可得,
本题正确选项:
【答案点睛】
本题考查含量词的命题的否定,属于基础题.
6、D
【答案解析】
取,可排除AB;由蛛网图可得数列的单调情况,进而得到要使,只需,由此可得到答案.
【题目详解】
取,,数列恒单调递增,且不存在最大值,故排除AB选项;
由蛛网图可知,存在两个不动点,且,,
因为当时,数列单调递增,则;
当时,数列单调递减,则;
所以要使,只需要,故,化简得且.
故选:D.
【答案点睛】
本题考查递推数列的综合运用,考查逻辑推理能力,属于难题.
7、C
【答案解析】
可分成两类,一类是3个新教师与一个老教师结对,其他一新一老结对,第二类两个老教师各带两个新教师,一个老教师带一个新教师,分别计算后相加即可.
【题目详解】
分成两类,一类是3个新教师与同一个老教师结对,有种结对结对方式,第二类两个老教师各带两个新教师,有.
∴共有结对方式60+90=150种.
故选:C.
【答案点睛】
本题考查排列组合的综合应用.解题关键确定怎样完成新老教师结对这个事情,是先分类还是先分步,确定方法后再计数.本题中有一个平均分组问题.计数时容易出错.两组中每组中人数都是2,因此方法数为.
8、D
【答案解析】
对每一个选项逐一分析判断得解.
【题目详解】
回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A错误;
所有样本点都在回归直线上,则变量间的相关系数为,故B错误;
若所有的样本点都在回归直线上,则的值与相等,故C错误;
相关系数r与符号相同,若回归直线的斜率,则,样本点分布应从左到右是上升的,则变量x与y正相关,故D正确.
故选D.
【答案点睛】
本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.
9、D
【答案解析】
先求出球心到四个支点所在球的小圆的距离,再加上侧面三角形的高,即可求解.
【题目详解】
设四个支点所在球的小圆的圆心为,球心为,
由题意,球的体积为,即可得球的半径为1,
又由边长为的正方形硬纸,可得圆的半径为,
利用球的性质可得,
又由到底面的距离即为侧面三角形的高,其中高为,
所以球心到底面的距离为.
故选:D.
【答案点睛】
本题主要考查了空间几何体的结构特征,以及球的性质的综合应用,着重考查了数形结合思想,以及推理与计算能力,属于基础题.
10、D
【答案解析】
当时,函数周期为,画出函数图像,如图所示,方程两个不同实根,即函数和有图像两个交点,计算,,根据图像得到答案.
【题目详解】
当时,,故函数周期为,画出函数图像,如图所示:
方程,即,即函数和有两个交点.
,,故,,,,.
根据图像知:.
故选:.
【答案点睛】
本题考查了函数的零点问题,确定函数周期画出函数图像是解题的关键.
11、D
【答案解析】
,所以要的函数的图象,只需将函数的图象向左平移个长度单位得到,故选D
12、D
【答案解析】
根据题意,求出集合A,进而求出集合和,分析选项即可得到答案.
【题目详解】
根据题意,
则
故选:D
【答案点睛】
此题考查集合的交并集运算,属于简单题目,
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
利用导数的几何意义可求得函数在处的切线,再根据切线与圆存在公共点,利用圆心到直线的距离满足的条件列式求解即可.
【题目详解】
解:由条件得到
又
所以函数在处的切线为,
即
圆方程整理可得:
即有圆心且
所以圆心到直线的距离,
即.解得或,
故答案为:.
【答案点睛】
本题主要考查了导数的几何意义求解切线方程的问题,同时也考查了根据直线与圆的位置关系求解参数范围的问题,属于基础题.
14、
【答案解析】
设圆C1上存在点P(x0,y0),则Q(y0,x0),分别满足两个圆的方程,列出方程组,转化成两个新圆有公共点求参数范围.
【题目详解】
设圆C1上存在点P(x0,y0)满足题意,点P关于直线x-y=0的对称点Q(y0,x0),
则,
故只需圆x2+(y-1)2=r2与圆(x-1)2+(y-2)2=1有交点即可,所以|r-1|≤≤r+1,解得.
故答案为:
【答案点睛】
此题考查圆与圆的位置关系,其中涉及点关于直线对称点问题,两个圆有公共点的判定方式.
15、
【答案解析】
由题意得,分类讨论作出函数图象,求得最值解不等式组即可.
【题目详解】
原问题等价于,
当时,函数图象如图
此时,
则,解得:;
当时,函数图象如图
此时,
则,解得:;
当时,函数图象如图
此时,
则,解得:;
当时,函数图象如图
此时,
则,解得:;
综上,满足条件的取值范围为.
故答案为:
【答案点睛】
本题主要考查了对勾函数的图象与性质,函数的最值求解,存在性问题的求解等,考查了分类讨论,转化与化归的思想.
16、
【答案解析】
由题可得,因为向量与向量平行,所以,解得.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2)当时,在上是减函数;当时,在上是增函数;(3)证明见解析.
【答案解