分享
2023年6第五节,,二次函数综合应用.doc
下载文档

ID:2068050

大小:23.50KB

页数:9页

格式:DOC

时间:2023-04-24

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 五节 二次 函数 综合 应用
6.第五节,,二次函数综合应用 第三章 函数 第五节 二次函数的综合应用 第1课时 二次函数的实际应用 (建议时间:40分钟) 1. 如图是我省最古老的石拱桥——晋城“景德桥〞,是晋城市城区通往阳城、沁水的交通要道,也是继赵州桥之后我国现存历史悠久的古代珍贵桥梁之一.AB的长约20米、桥拱最高点C到AB的距离为9米,以水平方向为x轴,选取点A为坐标原点建立直角坐标系,那么抛物线的表达式是y=-x2+x,那么选取点B为坐标原点时的抛物线的表达式为(  ) 第1题图 A. y=x2-x   B. y=x2+x C. y=-x2 D. y=-x2-x 2. (2023连云港)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.假设新建墙BC与CD总长为12 m,那么该梯形储料场ABCD的最大面积是(  ) 第2题图 A. 18 m2 B. 18m2 C. 24m2 D. m2 3. (2023襄阳)(人教九上P43问题改编)如图,假设被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为h=20t-5t2,那么小球从飞出到落地所用的时间为________s. 第3题图 4. (2023锦州)2023年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,该文化衫的进价为每件40元,当售价为每件60元时,每个月可销售出100件,根据市场行情,现决定涨价销售,调查说明,每件商品的售价每上涨1元,每月少销售出2件,设每件商品的售价为x元.每个月的销售为y件. (1)求y与x之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少? 5. (2023成都)随着5G技术的开展,人们对各类5G产品的使用充满期待.某公司方案在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化,设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如以下图的一次函数关系. (1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p=x+来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元? 第5题图 6. (2023武汉)某商店销售一种商品,经市场调查发现,该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价,周销售量,周销售利润w(元)的三组对应值如下表:售价x(元/件) 50 60 80 周销售量y(件) 100 80 40 周销售利润w(元) 1000 1600 1600 注:周销售利润=周销售量×(售价-进价) (1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是________元/件;当售价是____元/件时,周销售利润最大,最大利润是______元;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.假设周销售最大利润是1400元,求m的值. 7. 为迎接第二届全国青年运动会的召开,山西体育场周边社区积极参与社区改造,晋阳社区将一片空地进行修建改造,投资50000元修建的休闲区与投资40000元修建的鹅卵石健身道的面积相等,且修建1平方米的休闲区比修建1平方米的鹅卵石健身道费用高20元. (1)求修建1平方米的休闲区与修建1平方米的鹅卵石健身道的费用各是多少元? (2)如图,新入住的一个小区需要在一块长为60 米,宽为40米的矩形空地上修建四个面积相等的休闲区,并将余下的空地修建成横向的宽为x 米,纵向的宽为10米的鹅卵石健身道,且横向的宽度不超过纵向的宽度,所用工程队与晋阳社区相同且费用不变. ①用含x(米)的代数式表示休闲区的面积S(平方米),并注明x的取值范围;②综合实际情况现要求横向宽满足1≤x≤5,那么当x为多少时修建休闲区和鹅卵石健身道的总价w最低,最低造价为多少元? 第7题图 第2课时 二次函数综合题 (建议时间:40分钟) 1. (2023贺州改编)综合与探究 如图,在平面直角坐标系中,点B的坐标为(-1,0),且OA=OC,抛物线y=ax2+bx-4(a≠0)的图象经过A,B,C三点. (1)求点C的坐标及抛物线的表达式;(2)假设点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值. 第1题图 2. (2023德阳改编)综合与探究 如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴的负半轴交于点C,抛物线的对称轴为直线x=,B、C两点的坐标分别为B(2,0),C(0,-3),点P为直线BC下方的抛物线上的一个动点(不与B、C两点重合). (1)求此抛物线的表达式;(2)如图,连接PB、PC得到△PBC,问是否存在着这样的点P,使得△PBC的面积最大?如果存在,求出面积的最大值和此时点P的坐标;如果不存在,请说明理由. 第2题图 3. 综合与探究 如图,抛物线y=-x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l与抛物线交于B,C两点,点P是第一象限内抛物线上的一个动点,过点P作PD⊥x轴,垂足为点D,PD与BC交于点E,设点P的横坐标为m. (1)求直线l的表达式及点A坐标;(2)试探究是否存在点P,使△PCE为等腰三角形?假设存在,请直接写出点P的横坐标m的值;假设不存在,请说明理由. 第3题图 4. 综合与探究 如图,抛物线y=x2-x-4的图象与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,点D沿AB以每秒1个单位长度的速度在AB之间由点A向点B运动(点D不与A、B重合).连接AC、BC、CD.设点D的运动时间是t(t>0). (1)求直线BC的函数表达式和此抛物线的顶点坐标;(2)E为抛物线上一点,是否存在这样的t值,使以B,C,D,E为顶点的四边形是平行四边形?假设存在直接写出t的值;假设不存在,请说明理由. 第4题图 参考答案 第1课时 二次函数的实际应用 1. D 【解析】当以点B为坐标原点时,相当于在以点A为坐标原点的根底上向左平移了20个单位,将y=-x2+x化为顶点式为y=-(x-10)2+9,∴平移后的抛物线的表达式为y=-(x-10+20)2+9=-x2-x. 【一题多解】如解图,当点B为坐标原点时,设抛物线的表达式是y=ax2+bx,点A的坐标为(-20,0),点C的坐标为(-10,9),将A、C坐标代入表达式得,解得,∴当点B为坐标原点时,抛物线的表达式为y=-x2-x. 第1题解图 2. C 【解析】设BC的长为x m,那么CD=(12-x)m,如解图,过点C作CE⊥AB于点E,∵∠DCB=120°, ∴∠BCE=30°,∴CE=CB·cos30°=x,BE=CB·sin30°=x,∴S四边形ABCD=·CE=·x=-x2+6x, ∵-<0,∴当x=-=8时,面积有最大值为:-×82+6×8=24(m2). 第2题解图 3. 4 【解析】∵小球的飞行高度h与飞行时间t满足二次函数关系,h=20 t-5 t2=-5(t-2)2+20.∴当t=2时,小球运动到最高点.∴小球从飞出到落地所用的时间为4s. 4. 解:(1)根据题意得y= 100-2(x-60)=-2x+220(60≤x≤110);(2)由题意可得:(-2x+220)(x-40)=2250. x2-150x+5525=0, 解得x1=65,x2=85. 答:当每件商品的售价定为65元或85元时,利润恰好是2250元;(3)设利润为W元, ∴W=(x-40)(-2x+220)=-2x2+300x-8800=-2(x-75)2+2450. ∵a=-2<0, ∴抛物线开口向下. ∵60≤x≤110, ∴当x=75时,W有最大值,W最大=2450(元). 答:当售价定为75元时,获得最大利润,最大利润是2450元. 5. 解:(1)设y关于x的函数关系式为y=kx+b(k≠0),由图象可知, 将点(1,7000),(5,5000)代入得 解得 ∴y关于x的函数关系式为y=-500x+7500;(2)设销售收入为W,根据题意得 W=yp=(-500x+7500)·(x+), 整理得W=-250(x-7)2+16000, ∵-250<0,∴W在x=7时取得最大值,最大值为16000元, 此时该产品每台的销售价格为-500×7+7500=4000元. 答:第7个销售周期的销售收入最大,此时该产品每台的销售价格为4000元. 6. 解:(1)①y=-2x+200;②40,70,1800;(2)由题意可知w=(-2x+200)×(x-40-m)=-2x2+(280+2m)x-8000-200m,对称轴为直线x=, ∵m>0, ∴对称轴x=>70, ∵抛物线开口向下,在对称轴左侧,y随x的增大而增大, ∴当x=65时,ymax=1400,代入表达式解得m=5. 7. 解:(1)设修建1平方米的鹅卵石健身道费用为m元,那么修建1平方米的休闲区费用为(m+20)元,根据题意,得 =,解得m=80. 经检验 ,m=80是原分式方程的解,且符合实际, m+20=80+20=100. 答:修建1平方米的休闲区费用是100元,修建1平方米的鹅卵石健身道的费用是80元;(2)①S=(60-3×10)(40-3x) =-90x+1200(0<x≤10);②w=100(-90x+1200)+80[60×40-(-90x+1200)] =-1800x+216000. ∵-1800<0,∴w随x的增大而减小. ∵1≤x≤5,∴当x=5时,w最小=-1800×5+216000=207000(元). 答:当x=5时,修建休闲区和鹅卵石健身道的总价w最低,最低造价为207000元. 第2课时 二次函数综合题 1. 解:(1)由题意得C(0,-4). ∵OA=OC, ∴A(4,0). 将A(4,0),B(-1,0)带入y=ax2+bx-4得, 解得 ∴抛物线的表达式为y=x2-3x-4;(2)如解图,过点P作PE⊥x轴交AC于点E, 第1题解图 ∴PE∥y轴. ∵OA=OC, ∴∠PED=∠OCA=45°. ∴△DEP为等腰直角三角形, ∴PD=PE, ∴当PE取得最大值时,PD取得最大值, 易得直线AC的解析式为y=x-4, 设P(x,x2-3x-4),那么E(x,x-4), 那么PE=(x-4)-(x2-3x-4)=-x2+4x=-(x-2)2+4, ∵0<x<4, ∴当x=2时,PE取得最大值,最大值为4. 此时PD取得最大值,最大值为4×=2,点P坐标为(2,-6). 2. 解:(1)∵抛物线的对称轴为直线x=, ∴-=,那么b=-a. ∵抛物线过点C(0,-3), ∴代入得c=-3. ∴抛物线的表达式为y=ax2-ax-3. 又∵抛物线过点B(2,0), ∴代入得a=,那么b=-. ∴此抛物线的表达式为y=x2-x-3;(2)存在.如解图,过点P作PE⊥x轴于点E,交BC于点F, 第2题解图 设直线BC的表达式为y=mx+n, 将B(2,0),C(0,-3)代入y=mx+n,得 解得 ∴直线BC的表达式为y=x-3. 设点P的坐标为(x, x2-x-3),那么点F的坐标为(x,x-3), ∵点P为直线BC下方的抛物线上的一个动点, ∴PF=x-3-(x2-x-3)=-x2+x. ∴S△PBC=S△PFB+S△PFC=PF·BE+PF·OE =PF·OB =·(-x2+x)·2 =-x2

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开