分享
2023届四川省成都航天中学高考数学必刷试卷(含解析).doc
下载文档

ID:20671

大小:1.79MB

页数:19页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 四川省 成都 航天 中学 高考 数学 试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是( ) A. B. C. D. 2.以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月)变化图表,则以下说法错误的是( ) (注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆) A.3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均 B.4月份仅有三个城市居民消费价格指数超过102 C.四个月的数据显示北京市的居民消费价格指数增长幅度波动较小 D.仅有天津市从年初开始居民消费价格指数的增长呈上升趋势 3.将函数的图象先向右平移个单位长度,在把所得函数图象的横坐标变为原来的倍,纵坐标不变,得到函数的图象,若函数在上没有零点,则的取值范围是( ) A. B. C. D. 4.已知是过抛物线焦点的弦,是原点,则( ) A.-2 B.-4 C.3 D.-3 5.已知复数(为虚数单位)在复平面内对应的点的坐标是( ) A. B. C. D. 6.抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为( ) A. B. C. D. 7.设为锐角,若,则的值为( ) A. B. C. D. 8.已知中内角所对应的边依次为,若,则的面积为( ) A. B. C. D. 9.在棱长为a的正方体中,E、F、M分别是AB、AD、的中点,又P、Q分别在线段、上,且,设平面平面,则下列结论中不成立的是( ) A.平面 B. C.当时,平面 D.当m变化时,直线l的位置不变 10.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P表示π的近似值),若输入,则输出的结果是( ) A. B. C. D. 11.若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( ) A. B. C. D. 12.若复数满足,则的虚部为( ) A.5 B. C. D.-5 二、填空题:本题共4小题,每小题5分,共20分。 13.观察下列式子,,,,……,根据上述规律,第个不等式应该为__________. 14.若函数为偶函数,则 . 15.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为________. 16.中,角的对边分别为,且成等差数列,若,,则的面积为__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)如图,D是在△ABC边AC上的一点,△BCD面积是△ABD面积的2倍,∠CBD=2∠ABD=2θ. (Ⅰ)若θ=,求的值; (Ⅱ)若BC=4,AB=2,求边AC的长. 18.(12分)已知函数. (1)若曲线存在与轴垂直的切线,求的取值范围. (2)当时,证明:. 19.(12分)在直角坐标系中,已知圆,以原点为极点,x轴正半轴为极轴建立极坐标系,已知直线平分圆M的周长. (1)求圆M的半径和圆M的极坐标方程; (2)过原点作两条互相垂直的直线,其中与圆M交于O,A两点,与圆M交于O,B两点,求面积的最大值. 20.(12分)如图,在正四棱柱中,,,过顶点,的平面与棱,分别交于,两点(不在棱的端点处). (1)求证:四边形是平行四边形; (2)求证:与不垂直; (3)若平面与棱所在直线交于点,当四边形为菱形时,求长. 21.(12分)若数列满足:对于任意,均为数列中的项,则称数列为“数列”. (1)若数列的前项和,,试判断数列是否为“数列”?说明理由; (2)若公差为的等差数列为“数列”,求的取值范围; (3)若数列为“数列”,,且对于任意,均有,求数列的通项公式. 22.(10分)已知函数. (1)若函数在上单调递增,求实数的值; (2)定义:若直线与曲线都相切,我们称直线为曲线、的公切线,证明:曲线与总存在公切线. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 先求得的渐近线方程,根据没有公共点,判断出渐近线斜率的取值范围,由此求得离心率的取值范围. 【题目详解】 双曲线的渐近线方程为,由于双曲线与双曲线没有公共点,所以双曲线的渐近线的斜率,所以双曲线的离心率. 故选:C 【答案点睛】 本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题. 2、D 【答案解析】 采用逐一验证法,根据图表,可得结果. 【题目详解】 A正确,从图表二可知, 3月份四个城市的居民消费价格指数相差不大 B正确,从图表二可知, 4月份只有北京市居民消费价格指数低于102 C正确,从图表一中可知, 只有北京市4个月的居民消费价格指数相差不大 D错误,从图表一可知 上海市也是从年初开始居民消费价格指数的增长呈上升趋势 故选:D 【答案点睛】 本题考查图表的认识,审清题意,细心观察,属基础题. 3、A 【答案解析】 根据y=Acos(ωx+φ)的图象变换规律,求得g(x)的解析式,根据定义域求出的范围,再利用余弦函数的图象和性质,求得ω的取值范围. 【题目详解】 函数的图象先向右平移个单位长度, 可得的图象, 再将图象上每个点的横坐标变为原来的倍(纵坐标不变), 得到函数的图象, ∴周期, 若函数在上没有零点, ∴ , ∴ , ,解得, 又,解得, 当k=0时,解, 当k=-1时,,可得, . 故答案为:A. 【答案点睛】 本题考查函数y=Acos(ωx+φ)的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式,求解可得,属于较难题. 4、D 【答案解析】 设,,设:,联立方程得到,计算 得到答案. 【题目详解】 设,,故. 易知直线斜率不为,设:,联立方程, 得到,故,故. 故选:. 【答案点睛】 本题考查了抛物线中的向量的数量积,设直线为可以简化运算,是解题的关键 . 5、A 【答案解析】 直接利用复数代数形式的乘除运算化简,求得的坐标得出答案. 【题目详解】 解:, 在复平面内对应的点的坐标是. 故选:A. 【答案点睛】 本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题. 6、A 【答案解析】 设,,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程. 【题目详解】 解:设,∴, 又,两式相减得:, ∴, ∴, ∴直线的斜率为2,又∴过点, ∴直线的方程为:,即, 故选:A. 【答案点睛】 本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系. 7、D 【答案解析】 用诱导公式和二倍角公式计算. 【题目详解】 . 故选:D. 【答案点睛】 本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系. 8、A 【答案解析】 由余弦定理可得,结合可得a,b,再利用面积公式计算即可. 【题目详解】 由余弦定理,得,由,解得, 所以,. 故选:A. 【答案点睛】 本题考查利用余弦定理解三角形,考查学生的基本计算能力,是一道容易题. 9、C 【答案解析】 根据线面平行与垂直的判定与性质逐个分析即可. 【题目详解】 因为,所以,因为E、F分别是AB、AD的中点,所以,所以,因为面面,所以.选项A、D显然成立; 因为,平面,所以平面,因为平面,所以,所以B项成立; 易知平面MEF,平面MPQ,而直线与不垂直,所以C项不成立. 故选:C 【答案点睛】 本题考查直线与平面的位置关系.属于中档题. 10、B 【答案解析】 执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解. 【题目详解】 由题意,执行给定的程序框图,输入,可得: 第1次循环:; 第2次循环:; 第3次循环:; 第10次循环:, 此时满足判定条件,输出结果, 故选:B. 【答案点睛】 本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 11、B 【答案解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为,即命题是错误,则是正确的;在边长为4的正方形内任取一点,若的概率为,即命题是正确的,故由符合命题的真假的判定规则可得答案 是正确的,应选答案B。 点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题 解决问题的能力。 12、C 【答案解析】 把已知等式变形,再由复数代数形式的乘除运算化简得答案. 【题目详解】 由(1+i)z=|3+4i|, 得z, ∴z的虚部为. 故选C. 【答案点睛】 本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 根据题意,依次分析不等式的变化规律,综合可得答案. 【题目详解】 解:根据题意,对于第一个不等式,,则有, 对于第二个不等式,,则有, 对于第三个不等式,,则有, 依此类推: 第个不等式为:, 故答案为. 【答案点睛】 本题考查归纳推理的应用,分析不等式的变化规律. 14、1 【答案解析】 试题分析:由函数为偶函数函数为奇函数, . 考点:函数的奇偶性. 【方法点晴】本题考查导函数的奇偶性以及逻辑思维能力、等价转化能力、运算求解能力、特殊与一般思想、数形结合思想与转化思想,具有一定的综合性和灵活性,属于较难题型.首先利用转化思想,将函数为偶函数转化为 函数为奇函数,然后再利用特殊与一般思想,取. 15、 【答案解析】 根据三视图知该几何体是三棱柱与半圆锥的组合体,结合图中数据求出它的体积. 【题目详解】 根据三视图知,该几何体是三棱柱与半圆锥的组合体,如图所示: 结合图中数据,计算它的体积为. 故答案为

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开