分享
2023届四川省绵阳市高中高考压轴卷数学试卷(含解析).doc
下载文档

ID:20646

大小:2.43MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 四川省 绵阳市 高中 高考 压轴 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为( ) A. B. C. D. 2.已知集合,则等于( ) A. B. C. D. 3.已知集合,,若,则( ) A.或 B.或 C.或 D.或 4.已知是等差数列的前项和,,,则( ) A.85 B. C.35 D. 5.不等式的解集记为,有下面四个命题:;;;.其中的真命题是( ) A. B. C. D. 6.若直线与曲线相切,则( ) A.3 B. C.2 D. 7.已知函数,当时,恒成立,则的取值范围为( ) A. B. C. D. 8.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为( ) A.3 B. C.4 D. 9.已知等差数列的前n项和为,,则 A.3 B.4 C.5 D.6 10.正的边长为2,将它沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为( ) A. B. C. D. 11.执行下面的程序框图,如果输入,,则计算机输出的数是( ) A. B. C. D. 12.已知函数的导函数为,记,,…,N. 若,则 ( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.在边长为2的正三角形中,,则的取值范围为______. 14.(5分)某膳食营养科研机构为研究牛蛙体内的维生素E和锌、硒等微量元素(这些元素可以延缓衰老,还能起到抗癌的效果)对人体的作用,现从只雌蛙和只雄蛙中任选只牛蛙进行抽样试验,则选出的只牛蛙中至少有只雄蛙的概率是____________. 15.过且斜率为的直线交抛物线于两点,为的焦点若的面积等于的面积的2倍,则的值为___________. 16.若函数为奇函数,则_______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知离心率为的椭圆经过点. (1)求椭圆的方程; (2)荐椭圆的右焦点为,过点的直线与椭圆分别交于,若直线、、的斜率成等差数列,请问的面积是否为定值?若是,求出此定值;若不是,请说明理由. 18.(12分)已知椭圆的短轴的两个端点分别为、,焦距为. (1)求椭圆的方程; (2)已知直线与椭圆有两个不同的交点、,设为直线上一点,且直线、的斜率的积为.证明:点在轴上. 19.(12分)选修4-5:不等式选讲 已知函数 (Ⅰ)解不等式; (Ⅱ)对及,不等式恒成立,求实数的取值范围. 20.(12分)在平面直角坐标系中,已知椭圆的短轴长为,直线与椭圆相交于两点,线段的中点为.当与连线的斜率为时,直线的倾斜角为 (1)求椭圆的标准方程; (2)若是以为直径的圆上的任意一点,求证: 21.(12分)已知函数. (1)若,求证:. (2)讨论函数的极值; (3)是否存在实数,使得不等式在上恒成立?若存在,求出的最小值;若不存在,请说明理由. 22.(10分)已知,函数. (1)若函数在上为减函数,求实数的取值范围; (2)求证:对上的任意两个实数,,总有成立. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 先求出四个顶点、四个焦点的坐标,四个顶点构成一个菱形,求出菱形的面积,四个焦点构成正方形,求出其面积,利用重要不等式求得取得最大值时有,从而求得其离心率. 【题目详解】 双曲线与互为共轭双曲线, 四个顶点的坐标为,四个焦点的坐标为, 四个顶点形成的四边形的面积, 四个焦点连线形成的四边形的面积, 所以, 当取得最大值时有,,离心率, 故选:D. 【答案点睛】 该题考查的是有关双曲线的离心率的问题,涉及到的知识点有共轭双曲线的顶点,焦点,菱形面积公式,重要不等式求最值,等轴双曲线的离心率,属于简单题目. 2、C 【答案解析】 先化简集合A,再与集合B求交集. 【题目详解】 因为,, 所以. 故选:C 【答案点睛】 本题主要考查集合的基本运算以及分式不等式的解法,属于基础题. 3、B 【答案解析】 因为,所以,所以或. 若,则,满足. 若,解得或.若,则,满足.若,显然不成立,综上或,选B. 4、B 【答案解析】 将已知条件转化为的形式,求得,由此求得. 【题目详解】 设公差为,则,所以,,,. 故选:B 【答案点睛】 本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题. 5、A 【答案解析】 作出不等式组表示的可行域,然后对四个选项一一分析可得结果. 【题目详解】 作出可行域如图所示,当时,,即的取值范围为,所以为真命题; 为真命题;为假命题. 故选:A 【答案点睛】 此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题. 6、A 【答案解析】 设切点为,对求导,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果. 【题目详解】 设切点为, ∵,∴ 由①得, 代入②得, 则,, 故选A. 【答案点睛】 该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目. 7、A 【答案解析】 分析可得,显然在上恒成立,只需讨论时的情况即可,,然后构造函数,结合的单调性,不等式等价于,进而求得的取值范围即可. 【题目详解】 由题意,若,显然不是恒大于零,故. ,则在上恒成立; 当时,等价于, 因为,所以. 设,由,显然在上单调递增, 因为,所以等价于,即,则. 设,则. 令,解得,易得在上单调递增,在上单调递减, 从而,故. 故选:A. 【答案点睛】 本题考查了不等式恒成立问题,利用函数单调性是解决本题的关键,考查了学生的推理能力,属于基础题. 8、B 【答案解析】 先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可. 【题目详解】 由题意可知:, 所以,, 所以,所以, 又因为,所以, 所以. 故选:B. 【答案点睛】 本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键. 9、C 【答案解析】 方法一:设等差数列的公差为,则,解得,所以.故选C. 方法二:因为,所以,则.故选C. 10、D 【答案解析】 如图所示,设的中点为,的外接圆的圆心为,四面体的外接球的球心为,连接,利用正弦定理可得,利用球心的性质和线面垂直的性质可得四边形为平行四边形,最后利用勾股定理可求外接球的半径,从而可得外接球的表面积. 【题目详解】 如图所示,设的中点为,外接圆的圆心为,四面体的外接球的球心为,连接,则平面,. 因为,故, 因为,故. 由正弦定理可得,故,又因为,故. 因为,故平面,所以, 因为平面,平面,故,故, 所以四边形为平行四边形,所以, 所以,故外接球的半径为,外接球的表面积为. 故选:D. 【答案点睛】 本题考查平面图形的折叠以及三棱锥外接球表面积的计算,还考查正弦定理和余弦定理,折叠问题注意翻折前后的变量与不变量,外接球问题注意先确定外接球的球心的位置,然后把半径放置在可解的直角三角形中来计算,本题有一定的难度. 11、B 【答案解析】 先明确该程序框图的功能是计算两个数的最大公约数,再利用辗转相除法计算即可. 【题目详解】 本程序框图的功能是计算,中的最大公约数,所以, ,,故当输入,,则计算机输出的数 是57. 故选:B. 【答案点睛】 本题考查程序框图的功能,做此类题一定要注意明确程序框图的功能是什么,本题是一道基础题. 12、D 【答案解析】 通过计算,可得,最后计算可得结果. 【题目详解】 由题可知: 所以 所以猜想可知: 由 所以 所以 故选:D 【答案点睛】 本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 建立直角坐标系,依题意可求得,而,,,故可得,且,由此构造函数,,利用二次函数的性质即可求得取值范围. 【题目详解】 建立如图所示的平面直角坐标系, 则,,,设,,,, 根据,即,,,则, ,即,,,则,, 所以, , ,,, ,且, 故, 设,,易知二次函数的对称轴为, 故函数在,上的最大值为,最小值为, 故的取值范围为. 故答案为:. 【答案点睛】 本题考查平面向量数量积的坐标运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意通过设元、消元,将问题转化为元二次函数的值域问题. 14、 【答案解析】 记只雌蛙分别为,只雄蛙分别为,从中任选只牛蛙进行抽样试验,其基本事件为,共15个,选出的只牛蛙中至少有只雄蛙包含的基本事件为,共9个,故选出的只牛蛙中至少有只雄蛙的概率是. 15、2 【答案解析】 联立直线与抛物线的方程,根据一元二次方程的根与系数的关系以及面积关系求解即可. 【题目详解】 如图,设,由,则, 由可得,由,则, 所以,得. 故答案为:2 【答案点睛】 此题考查了抛物线的性质,属于中档题. 16、-2 【答案解析】 由是定义在上的奇函数,可知对任意的,都成立,代入函数式可求得的值. 【题目详解】 由题意,的定义域为,, 是奇函数,则,即对任意的,都成立, 故,整理得,解得. 故答案为:. 【答案点睛】 本题考查奇函数性质的应用,考查学生的计算求解能力,属于基础题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、 (1);(2)是, 【答案解析】 (1)根据及可得,再将点代入椭圆的方程与联立解出,即可求出椭圆的方程; (2) 可设所在直线的方程为,,,,将直线的方程与椭圆的方程联立,用根与系数的关系求出,然后将直线、、的斜率、、分别用表示,利用可求出,从而可确定点恒在一条直线上,结合图形即可求出的面积. 【题目详解】 (1)因为椭圆的离心率为,所以,即, 又,所以,① 因为点在椭圆上,所以,② 由①②解得,所以椭圆C的方程为. (1)可知,,可设所在直线的方程为, 由,得, 设,,,则,, 设直线、、的斜率分别为、、, 因为三点共线,所以,即, 所以, 又, 因为直线、、的斜率成等差数列,所以, 即,化简得,即点恒在一条直线上, 又因为直线方程为,且, 所以是定值. 【答案点睛】 本题主要考查椭圆的方程,直线与椭圆的位置关系及椭圆中的定值问题,属于中档

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开