分享
2023届四川省南充高级中学高考数学全真模拟密押卷(含解析).doc
下载文档

ID:20638

大小:2.11MB

页数:19页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 四川省 南充 高级中学 高考 数学 模拟 密押卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知,,则( ) A. B. C.3 D.4 2.网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)( ) A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月 3.已知的共轭复数是,且(为虚数单位),则复数在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.在三棱锥中,,,则三棱锥外接球的表面积是( ) A. B. C. D. 5.已知函数的图像上有且仅有四个不同的关于直线对称的点在的图像上,则的取值范围是( ) A. B. C. D. 6.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为的正方形及正方形内一段圆弧组成,则这个几何体的表面积是( ) A. B. C. D. 7.如图是二次函数的部分图象,则函数的零点所在的区间是( ) A. B. C. D. 8.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数﹔最后根据统计数来估计的值.若,则的估计值为( ) A. B. C. D. 9.已知函数,集合,,则( ) A. B. C. D. 10.已知,则下列不等式正确的是( ) A. B. C. D. 11.由曲线y=x2与曲线y2=x所围成的平面图形的面积为(  ) A.1 B. C. D. 12.已知函数,,的零点分别为,,,则( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知函数()在区间上的值小于0恒成立,则的取值范围是________. 14.已知等差数列的前n项和为Sn,若,则____. 15.在的展开式中,的系数等于__. 16.在平面直角坐标系xOy中,己知直线与函数的图象在y轴右侧的公共点从左到右依次为,,…,若点的横坐标为1,则点的横坐标为________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为. (1)求曲线的普通方程和直线的直角坐标方程; (2)设点,若直线与曲线相交于、两点,求的值 18.(12分)数列满足,是与的等差中项. (1)证明:数列为等比数列,并求数列的通项公式; (2)求数列的前项和. 19.(12分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系. 20.(12分)已知是等差数列,满足,,数列满足,,且是等比数列. (1)求数列和的通项公式; (2)求数列的前项和. 21.(12分)在直角坐标系中,曲线的参数方程为(为参数,将曲线经过伸缩变换后得到曲线.在以原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为. (1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程; (2)已知点是曲线上的任意一点,又直线上有两点和,且,又点的极角为,点的极角为锐角.求: ①点的极角; ②面积的取值范围. 22.(10分)已知函数. (1)求不等式的解集; (2)若存在实数,使得不等式成立,求实数的取值范围. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 根据复数相等的特征,求出和,再利用复数的模公式,即可得出结果. 【题目详解】 因为,所以, 解得 则. 故选:A. 【答案点睛】 本题考查相等复数的特征和复数的模,属于基础题. 2、C 【答案解析】 根据图形,计算出,然后解不等式即可. 【题目详解】 解:, 点在直线上 , 令 因为横轴1代表2019年8月,所以横轴13代表2020年8月, 故选:C 【答案点睛】 考查如何确定线性回归直线中的系数以及线性回归方程的实际应用,基础题. 3、D 【答案解析】 设,整理得到方程组,解方程组即可解决问题. 【题目详解】 设, 因为,所以, 所以,解得:, 所以复数在复平面内对应的点为,此点位于第四象限. 故选D 【答案点睛】 本题主要考查了复数相等、复数表示的点知识,考查了方程思想,属于基础题. 4、B 【答案解析】 取的中点,连接、,推导出,设设球心为,和的中心分别为、,可得出平面,平面,利用勾股定理计算出球的半径,再利用球体的表面积公式可得出结果. 【题目详解】 取的中点,连接、, 由和都是正三角形,得,,则,则,由勾股定理的逆定理,得. 设球心为,和的中心分别为、. 由球的性质可知:平面,平面, 又,由勾股定理得. 所以外接球半径为. 所以外接球的表面积为. 故选:B. 【答案点睛】 本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题. 5、D 【答案解析】 根据对称关系可将问题转化为与有且仅有四个不同的交点;利用导数研究的单调性从而得到的图象;由直线恒过定点,通过数形结合的方式可确定;利用过某一点曲线切线斜率的求解方法可求得和,进而得到结果. 【题目详解】 关于直线对称的直线方程为: 原题等价于与有且仅有四个不同的交点 由可知,直线恒过点 当时, 在上单调递减;在上单调递增 由此可得图象如下图所示: 其中、为过点的曲线的两条切线,切点分别为 由图象可知,当时,与有且仅有四个不同的交点 设,,则,解得: 设,,则,解得: ,则 本题正确选项: 【答案点睛】 本题考查根据直线与曲线交点个数确定参数范围的问题;涉及到过某一点的曲线切线斜率的求解问题;解题关键是能够通过对称性将问题转化为直线与曲线交点个数的问题,通过确定直线恒过的定点,采用数形结合的方式来进行求解. 6、C 【答案解析】 画出直观图,由球的表面积公式求解即可 【题目详解】 这个几何体的直观图如图所示,它是由一个正方体中挖掉个球而形成的,所以它的表面积为. 故选:C 【答案点睛】 本题考查三视图以及几何体的表面积的计算,考查空间想象能力和运算求解能力. 7、B 【答案解析】 根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论. 【题目详解】 ∵,结合函数的图象可知, 二次函数的对称轴为,, ,∵, 所以在上单调递增. 又因为, 所以函数的零点所在的区间是. 故选:B. 【答案点睛】 本题考查二次函数的图象及函数的零点,属于基础题. 8、B 【答案解析】 先利用几何概型的概率计算公式算出,能与构成锐角三角形三边长的概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出. 【题目详解】 因为,都是区间上的均匀随机数,所以有,,若,能与构成锐角三角形三边长, 则,由几何概型的概率计算公式知, 所以. 故选:B. 【答案点睛】 本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题. 9、C 【答案解析】 分别求解不等式得到集合,再利用集合的交集定义求解即可. 【题目详解】 ,, ∴. 故选C. 【答案点睛】 本题主要考查了集合的基本运算,难度容易. 10、D 【答案解析】 利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项. 【题目详解】 已知,赋值法讨论的情况: (1)当时,令,,则,,排除B、C选项; (2)当时,令,,则,排除A选项. 故选:D. 【答案点睛】 比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题. 11、B 【答案解析】 首先求得两曲线的交点坐标,据此可确定积分区间,然后利用定积分的几何意义求解面积值即可. 【题目详解】 联立方程:可得:,, 结合定积分的几何意义可知曲线y=x2与曲线y2=x所围成的平面图形的面积为: . 本题选择B选项. 【答案点睛】 本题主要考查定积分的概念与计算,属于中等题. 12、C 【答案解析】 转化函数,,的零点为与,,的交点,数形结合,即得解. 【题目详解】 函数,,的零点,即为与,,的交点, 作出与,,的图象, 如图所示,可知 故选:C 【答案点睛】 本题考查了数形结合法研究函数的零点,考查了学生转化划归,数形结合的能力,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 首先根据的取值范围,求得的取值范围,由此求得函数的值域,结合区间上的值小于0恒成立列不等式组,解不等式组求得的取值范围. 【题目详解】 由于,所以, 由于区间上的值小于0恒成立, 所以(). 所以, 由于,所以, 由于,所以令得. 所以的取值范围是. 故答案为: 【答案点睛】 本小题主要考查三角函数值域的求法,考查三角函数值恒小于零的问题的求解,考查化归与转化的数学思想方法,属于中档题. 14、 【答案解析】 由,,成等差数列,代入可得的值. 【题目详解】 解:由等差数列的性质可得:,,成等差数列, 可得:,代入, 可得:, 故答案为:. 【答案点睛】 本题主要考查等差数列前n项和的性质,相对不难. 15、7 【答案解析】 由题,得,令,即可得到本题答案. 【题目详解】 由题,得, 令,得x的系数. 故答案为:7 【答案点睛】 本题主要考查二项式定理的应用,属基础题. 16、1 【答案解析】 当时,得,或,依题意可得,可求得,继而可得答案. 【题目详解】 因为点的横坐标为1,即当时,, 所以或, 又直线与函数的图象在轴右侧的公共点从左到右依次为,, 所以, 故, 所以函数的关系式为. 当时,(1), 即点的横坐标为1,为二函数的图象的第二个公共点. 故答案为:1. 【答案点睛】 本题考查三角函数关系式的恒等变换、正弦型函数的性质的应用,主要考查学生的运算能力及思维能力,属于中档题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)的普通方程为,的直角坐标方程为;(2). 【答案解析】 (1)在曲线的参数方程中消去参数可得出曲线的普通方程,利用两角和的正弦公式以及可将直线的极

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开