温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
高考
数学
一轮
复习
课时
作业
11
函数
方程
课时作业11 函数与方程
[基础达标]
一、选择题
1.[2023年·河南濮阳模拟]函数f(x)=ln 2x-1的零点所在区间为( )
A.(2,3) B.(3,4)
C.(0,1) D.(1,2)
解析:由f(x)=ln 2x-1,得函数是增函数,并且是连续函数,f(1)=ln 2-1<0,f(2)=ln 4-1>0,根据函数零点存在性定理可得,函数f(x)的零点位于区间(1,2)上,故选D.
答案:D
2.[2023年·四川绵阳模拟]函数f(x)=2x--a的一个零点在区间(1,2)内,则实数a的取值范围是( )
A.(1,3) B.(1,2)
C.(0,3) D.(0,2)
解析:由题意,知函数f(x)在(1,2)上单调递增,又函数的一个零点在区间(1,2)内,所以即解得0<a<3,故选C项.
答案:C
3.[2023年·河南新乡模拟]若函数f(x)=log2(x+a)与g(x)=x2-(a+1)x-4(a+5)存在相同的零点,则a的值为( )
A.4或- B.4或-2
C.5或-2 D.6或-
解析:g(x)=x2-(a+1)x-4(a+5)=(x+4)[x-(a+5)],令g(x)=0,得x=-4或x=a+5,则f(-4)=log2(-4+a)=0或f(a+5)=log2(2a+5)=0,解得a=5或a=-2.
答案:C
4.[2023年·河北保定月考]设定义在R上的函数f(x)满足f(x+2)=-f(x),且f(x)=
则函数g(x)=lg x的图象与函数f(x)的图象的交点个数为( )
A.3 B.5
C.9 D.10
解析:因为函数f(x)满足f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),所以函数f(x)是以4为周期的周期函数.在同一平面直角坐标系内作出函数f(x)的图象与函数g(x)=lg x的图象,如图所示,由图可知两曲线有9个交点.
答案:C
5.[2023年·山东潍坊期中]已知函数f(x)=(a>0),若存在实数b使函数g(x)=f(x)-b有两个零点,则实数a的取值范围是( )
A.(0,1) B.(1,+∞)
C.(1,2 019) D.[1,+∞)
解析:由题意知f(x)在(-∞,a]上为增函数,在(a,+∞)上也是增函数.当a3>a2时,f(x)在R上不是增函数,故必定存在b,使得直线y=b与f(x)的图象有两个交点,即g(x)=f(x)-b有两个零点,此时a>1.故选B项.
答案:B
二、填空题
6.函数f(x)=ex+x-2的零点所在区间为________.(答案不唯一)
解析:∵f′(x)=ex+>0,∴f(x)在R上单调递增,
又f(0)=1-2<0,f(1)=e->0.
答案:(0,1)
7.[2023年·天津联考]已知f(x)=则函数g(x)=f(x)-ex的零点个数为________.
解析:函数g(x)=f(x)-ex的零点个数即函数y=f(x)与y=ex的图象的交点个数.作出函数图象,如图,可知两函数图象有2个交点,即函数g(x)=f(x)-ex有2个零点.
答案:2
8.[2023年·湘赣十四校联考]已知函数f(x)=有且只有一个零点,则实数a的取值范围是________.
解析:当a>0时,函数y=ax-3(x>0)必有一个零点,又-<0,所以a-2+2-+a>0,得a>1;当a=0时,f(x)=恰有一个零点;当a<0时,若x>0,则f(x)=ax-3无零点,若x≤0,则f(x)=ax2+2x+a,->0,f(0)=a<0,此时,f(x)恒小于0,所以当a<0时,f(x)无零点.故答案为{a|a=0或a>1}.
答案:{a|a=0或a>1}
三、解答题
9.设函数f(x)=ax2+bx+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的零点;
(2)若对任意b∈R,函数f(x)恒有两个不同零点,求实数a的取值范围.
解析:(1)当a=1,b=-2时,f(x)=x2-2x-3,
令f(x)=0,得x=3或x=-1.
∴函数f(x)的零点为3或-1.
(2)依题意,f(x)=ax2+bx+b-1=0有两个不同实根,
∴b2-4a(b-1)>0恒成立,
即对于任意b∈R,b2-4ab+4a>0恒成立,
所以有(-4a)2-4×(4a)<0⇒a2-a<0,解得0<a<1,
因此实数a的取值范围是(0,1).
10.已知a是正实数,函数f(x)=2ax2+2x-3-a.如果函数y=f(x)在区间[-1,1]上有零点,求a的取值范围.
解析:f(x)=2ax2+2x-3-a的对称轴为x=-.
①当-≤-1,即0<a≤时,
须使即
∴无解.
②当-1<-<0,即a>时,
须使即
解得a≥1,
∴a的取值范围是[1,+∞).
[能力挑战]
11.[2023年·安徽黄山第一次质量检测]若函数f(x)=4x-m·2x+m+3有两个不同的零点x1,x2,且x1∈(0,1),x2∈(2,+∞),则实数m的取值范围为( )
A.(-∞,-2) B.(-∞,-2)∪(6,+∞)
C.(7,+∞) D.(-∞,-3)
解析:设t=2x,则函数f(t)=t2-mt+m+3有两个不同的零点t1,t2,t1∈(1,2),t2∈(4,+∞),
∴即解得m>7,故选C项.
答案:C
12.[2023年·辽宁大连模拟]已知偶函数y=f(x)(x∈R)满足f(x)=x2-3x(x≥0),若函数g(x)=则y=f(x)-g(x)的零点个数为( )
A.1 B.3
C.2 D.4
解析:作出函数f(x)与g(x)的图象,如图所示,由图象可知两个函数图象有3个不同的交点,所以函数y=f(x)-g(x)有3个零点,故选B项.
答案:B
13.[2023年·河北武邑中学第二次调研]已知函数f(x)=若方程f(x)=-x+a有且只有两个不相等的实数根,则实数a的取值范围为( )
A.(-∞,0) B.[0,1)
C.(-∞,1) D.[0,+∞)
解析:函数f(x)=的图象如图所示.
作出直线l:y=a-x,并平移直线l,观察可得当a<1时,函数y=f(x)的图象与函数y=-x+a的图象有两个交点,即方程f(x)=-x+a有两个不相等的实数根,则a<1,故选C项.
答案:C
5